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Figure 7.1 A D-wave qubit processor: The brain of a quantum computer that encodes information in quantum bits to perform
complex calculations. (credit: modification of work by D-Wave Systems, Inc.)
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Introduction
Quantum mechanics is a powerful framework for understanding the motions and interactions of particles at small scales,
such as atoms and molecules. The ideas behind quantum mechanics often appear quite strange. In many ways, our everyday
experience with the macroscopic physical world does not prepare us for the microscopic world of quantum mechanics. The
purpose of this chapter is to introduce you to this exciting world.

Pictured above is a quantum-computer processor. This device is the “brain” of a quantum computer that operates at near-
absolute zero temperatures. Unlike a digital computer, which encodes information in binary digits (definite states of either
zero or one), a quantum computer encodes information in quantum bits or qubits (mixed states of zero and one). Quantum
computers are discussed in the first section of this chapter.
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7.1 | Wave Functions

Learning Objectives

By the end of this section, you will be able to:

• Describe the statistical interpretation of the wave function

• Use the wave function to determine probabilities

• Calculate expectation values of position, momentum, and kinetic energy

In the preceding chapter, we saw that particles act in some cases like particles and in other cases like waves. But what does
it mean for a particle to “act like a wave”? What precisely is “waving”? What rules govern how this wave changes and
propagates? How is the wave function used to make predictions? For example, if the amplitude of an electron wave is given
by a function of position and time, Ψ(x, t) , defined for all x, where exactly is the electron? The purpose of this chapter is

to answer these questions.

Using the Wave Function
A clue to the physical meaning of the wave function Ψ(x, t) is provided by the two-slit interference of monochromatic light

(Figure 7.2). (See also Electromagnetic Waves (http://cnx.org/content/m58495/latest/) and Interference.) The

wave function of a light wave is given by E(x,t), and its energy density is given by |E|2 , where E is the electric field

strength. The energy of an individual photon depends only on the frequency of light, εphoton = h f , so |E|2 is proportional

to the number of photons. When light waves from S1 interfere with light waves from S2 at the viewing screen (a distance

D away), an interference pattern is produced (part (a) of the figure). Bright fringes correspond to points of constructive
interference of the light waves, and dark fringes correspond to points of destructive interference of the light waves (part
(b)).

Suppose the screen is initially unexposed to light. If the screen is exposed to very weak light, the interference pattern appears
gradually (Figure 7.2(c), left to right). Individual photon hits on the screen appear as dots. The dot density is expected to
be large at locations where the interference pattern will be, ultimately, the most intense. In other words, the probability (per
unit area) that a single photon will strike a particular spot on the screen is proportional to the square of the total electric field,

|E|2 at that point. Under the right conditions, the same interference pattern develops for matter particles, such as electrons.
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Figure 7.2 Two-slit interference of monochromatic light. (a) Schematic of two-slit interference; (b) light interference pattern;
(c) interference pattern built up gradually under low-intensity light (left to right).

Visit this interactive simulation (https://openstaxcollege.org/l/21intquawavint) to learn more about
quantum wave interference.

The square of the matter wave |Ψ|2 in one dimension has a similar interpretation as the square of the electric field |E|2 . It

gives the probability that a particle will be found at a particular position and time per unit length, also called the probability
density. The probability (P) a particle is found in a narrow interval (x, x + dx) at time t is therefore

(7.1)P(x, x + dx) = |Ψ(x, t)|2dx.

(Later, we define the magnitude squared for the general case of a function with “imaginary parts.”) This probabilistic
interpretation of the wave function is called the Born interpretation. Examples of wave functions and their squares for a
particular time t are given in Figure 7.3.
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Figure 7.3 Several examples of wave functions and the
corresponding square of their wave functions.

If the wave function varies slowly over the interval Δx , the probability a particle is found in the interval is approximately

(7.2)P(x, x + Δx) ≈ |Ψ(x, t)|2Δx.

Notice that squaring the wave function ensures that the probability is positive. (This is analogous to squaring the electric
field strength—which may be positive or negative—to obtain a positive value of intensity.) However, if the wave function
does not vary slowly, we must integrate:

(7.3)
P(x, x + Δx) = ∫

x

x + Δx

|Ψ(x, t)|2dx.

This probability is just the area under the function |Ψ(x, t)|2 between x and x + Δx . The probability of finding the particle

“somewhere” (the normalization condition) is

(7.4)
P(−∞, +∞) = ∫

−∞

∞
|Ψ(x, t)|2dx = 1.

For a particle in two dimensions, the integration is over an area and requires a double integral; for a particle in three
dimensions, the integration is over a volume and requires a triple integral. For now, we stick to the simple one-dimensional
case.

Example 7.1

Where Is the Ball? (Part I)

A ball is constrained to move along a line inside a tube of length L. The ball is equally likely to be found anywhere
in the tube at some time t. What is the probability of finding the ball in the left half of the tube at that time? (The
answer is 50%, of course, but how do we get this answer by using the probabilistic interpretation of the quantum
mechanical wave function?)

Strategy

The first step is to write down the wave function. The ball is equally like to be found anywhere in the box, so one
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way to describe the ball with a constant wave function (Figure 7.4). The normalization condition can be used to
find the value of the function and a simple integration over half of the box yields the final answer.

Figure 7.4 Wave function for a ball in a tube of length L.

Solution

The wave function of the ball can be written as Ψ(x, t) = C(0 < x < L), where C is a constant, and

Ψ(x, t) = 0 otherwise. We can determine the constant C by applying the normalization condition (we set t = 0
to simplify the notation):

P(x = −∞, +∞) = ∫
−∞

∞
|C|2dx = 1.

This integral can be broken into three parts: (1) negative infinity to zero, (2) zero to L, and (3) L to infinity. The
particle is constrained to be in the tube, so C = 0 outside the tube and the first and last integrations are zero. The

above equation can therefore be written

P(x = 0, L) = ∫
0

L

|C|2dx = 1.

The value C does not depend on x and can be taken out of the integral, so we obtain

|C|2∫
0

L
dx = 1.

Integration gives

C = 1
L.

To determine the probability of finding the ball in the first half of the box (0 < x < L), we have

P(x = 0, L/2) = ⌠
⌡
0

L/2

| 1
L |2 dx = ⎛

⎝
1
L

⎞
⎠
L
2 = 0.50.

Significance

The probability of finding the ball in the first half of the tube is 50%, as expected. Two observations are
noteworthy. First, this result corresponds to the area under the constant function from x = 0 to L/2 (the area of a

square left of L/2). Second, this calculation requires an integration of the square of the wave function. A common
mistake in performing such calculations is to forget to square the wave function before integration.
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Example 7.2

Where Is the Ball? (Part II)

A ball is again constrained to move along a line inside a tube of length L. This time, the ball is found preferentially
in the middle of the tube. One way to represent its wave function is with a simple cosine function (Figure 7.5).
What is the probability of finding the ball in the last one-quarter of the tube?

Figure 7.5 Wave function for a ball in a tube of length L,
where the ball is preferentially in the middle of the tube.

Strategy

We use the same strategy as before. In this case, the wave function has two unknown constants: One is associated
with the wavelength of the wave and the other is the amplitude of the wave. We determine the amplitude by using
the boundary conditions of the problem, and we evaluate the wavelength by using the normalization condition.
Integration of the square of the wave function over the last quarter of the tube yields the final answer. The
calculation is simplified by centering our coordinate system on the peak of the wave function.

Solution

The wave function of the ball can be written

Ψ(x, 0) = A cos(kx)(−L/2 < x < L/2),

where A is the amplitude of the wave function and k = 2π/λ is its wave number. Beyond this interval, the

amplitude of the wave function is zero because the ball is confined to the tube. Requiring the wave function to
terminate at the right end of the tube gives

Ψ⎛
⎝x = L

2, 0⎞
⎠ = 0.

Evaluating the wave function at x = L/2 gives

A cos(kL/2) = 0.

This equation is satisfied if the argument of the cosine is an integral multiple of π/2, 3π/2, 5π/2, and so on. In

this case, we have

kL
2 = π

2,

or

k = π
L.

Applying the normalization condition gives A = 2/L , so the wave function of the ball is

Ψ(x, 0) = 2
L cos(πx/L), − L/2 < x < L/2.
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To determine the probability of finding the ball in the last quarter of the tube, we square the function and integrate:

P(x = L/4, L/2) = ⌠
⌡L/4

L/2

| 2
L cos⎛

⎝
πx
L

⎞
⎠|2 dx = 0.091.

Significance

The probability of finding the ball in the last quarter of the tube is 9.1%. The ball has a definite wavelength
(λ = 2L) . If the tube is of macroscopic length (L = 1 m) , the momentum of the ball is

p = h
λ = h

2L ~10−36 m/s.

This momentum is much too small to be measured by any human instrument.

An Interpretation of the Wave Function
We are now in position to begin to answer the questions posed at the beginning of this section. First, for a traveling particle
described by Ψ(x, t) = A sin(kx − ωt) , what is “waving?” Based on the above discussion, the answer is a mathematical

function that can, among other things, be used to determine where the particle is likely to be when a position measurement
is performed. Second, how is the wave function used to make predictions? If it is necessary to find the probability that a
particle will be found in a certain interval, square the wave function and integrate over the interval of interest. Soon, you
will learn soon that the wave function can be used to make many other kinds of predictions, as well.

Third, if a matter wave is given by the wave function Ψ(x, t) , where exactly is the particle? Two answers exist: (1) when

the observer is not looking (or the particle is not being otherwise detected), the particle is everywhere (x = −∞, +∞) ;

and (2) when the observer is looking (the particle is being detected), the particle “jumps into” a particular position state

(x, x + dx) with a probability given by P(x, x + dx) = |Ψ(x, t)|2dx —a process called state reduction or wave function

collapse. This answer is called the Copenhagen interpretation of the wave function, or of quantum mechanics.

To illustrate this interpretation, consider the simple case of a particle that can occupy a small container either at x1 or x2

(Figure 7.6). In classical physics, we assume the particle is located either at x1 or x2 when the observer is not looking.

However, in quantum mechanics, the particle may exist in a state of indefinite position—that is, it may be located at x1

and x2 when the observer is not looking. The assumption that a particle can only have one value of position (when the

observer is not looking) is abandoned. Similar comments can be made of other measurable quantities, such as momentum
and energy.

Figure 7.6 A two-state system of position of a particle.

The bizarre consequences of the Copenhagen interpretation of quantum mechanics are illustrated by a creative thought
experiment first articulated by Erwin Schrödinger (National Geographic, 2013) (Figure 7.7):

“A cat is placed in a steel box along with a Geiger counter, a vial of poison, a hammer, and a radioactive substance. When
the radioactive substance decays, the Geiger detects it and triggers the hammer to release the poison, which subsequently
kills the cat. The radioactive decay is a random [probabilistic] process, and there is no way to predict when it will happen.
Physicists say the atom exists in a state known as a superposition—both decayed and not decayed at the same time. Until
the box is opened, an observer doesn’t know whether the cat is alive or dead—because the cat’s fate is intrinsically tied to
whether or not the atom has decayed and the cat would [according to the Copenhagen interpretation] be “living and dead ...
in equal parts” until it is observed.”
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Figure 7.7 Schrödinger’s cat.

Schrödinger took the absurd implications of this thought experiment (a cat simultaneously dead and alive) as an argument
against the Copenhagen interpretation. However, this interpretation remains the most commonly taught view of quantum
mechanics.

Two-state systems (left and right, atom decays and does not decay, and so on) are often used to illustrate the principles of
quantum mechanics. These systems find many applications in nature, including electron spin and mixed states of particles,
atoms, and even molecules. Two-state systems are also finding application in the quantum computer, as mentioned in the
introduction of this chapter. Unlike a digital computer, which encodes information in binary digits (zeroes and ones), a
quantum computer stores and manipulates data in the form of quantum bits, or qubits. In general, a qubit is not in a state of
zero or one, but rather in a mixed state of zero and one. If a large number of qubits are placed in the same quantum state,
the measurement of an individual qubit would produce a zero with a probability p, and a one with a probability q = 1 − p.
Many scientists believe that quantum computers are the future of the computer industry.

Complex Conjugates
Later in this section, you will see how to use the wave function to describe particles that are “free” or bound by forces
to other particles. The specific form of the wave function depends on the details of the physical system. A peculiarity of
quantum theory is that these functions are usually complex functions. A complex function is one that contains one or
more imaginary numbers (i = −1) . Experimental measurements produce real (nonimaginary) numbers only, so the above

procedure to use the wave function must be slightly modified. In general, the probability that a particle is found in the
narrow interval (x, x + dx) at time t is given by

(7.5)P(x, x + dx) = |Ψ(x, t)|2dx = Ψ* (x, t)Ψ(x, t)dx,

where Ψ* (x, t) is the complex conjugate of the wave function. The complex conjugate of a function is obtaining by

replacing every occurrence of i = −1 in that function with −i . This procedure eliminates complex numbers in all

predictions because the product Ψ* (x, t)Ψ(x, t) is always a real number.

Check Your Understanding If a = 3 + 4i , what is the product a* a ?
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7.2

Consider the motion of a free particle that moves along the x-direction. As the name suggests, a free particle experiences no
forces and so moves with a constant velocity. As we will see in a later section of this chapter, a formal quantum mechanical
treatment of a free particle indicates that its wave function has real and complex parts. In particular, the wave function is
given by

Ψ(x, t) = A cos(kx − ωt) + iA sin(kx − ωt),

where A is the amplitude, k is the wave number, and ω is the angular frequency. Using Euler’s formula,

eiϕ = cos(ϕ) + i sin⎛
⎝ϕ⎞

⎠, this equation can be written in the form

Ψ(x, t) = Aei(kx − ωt) = Aeiϕ,

where ϕ is the phase angle. If the wave function varies slowly over the interval Δx, the probability of finding the particle

in that interval is

P(x, x + Δx) ≈ Ψ* (x, t)Ψ(x, t)Δx = ⎛
⎝Aeiϕ⎞

⎠
⎛
⎝A* e−iϕ⎞

⎠Δx = (A* A)Δx.

If A has real and complex parts (a + ib , where a and b are real constants), then

A* A = (a + ib)(a − ib) = a2 + b2.

Notice that the complex numbers have vanished. Thus,

P(x, x + Δx) ≈ |A|2Δx

is a real quantity. The interpretation of Ψ* (x, t)Ψ(x, t) as a probability density ensures that the predictions of quantum

mechanics can be checked in the “real world.”

Check Your Understanding Suppose that a particle with energy E is moving along the x-axis and is
confined in the region between 0 and L. One possible wave function is

ψ(x, t) =
⎧

⎩
⎨Ae−iEt/ℏ sin πx

L , when 0 ≤ x ≤ L

0, otherwise
.

Determine the normalization constant.

Expectation Values
In classical mechanics, the solution to an equation of motion is a function of a measurable quantity, such as x(t), where x is
the position and t is the time. Note that the particle has one value of position for any time t. In quantum mechanics, however,
the solution to an equation of motion is a wave function, Ψ(x, t). The particle has many values of position for any time t,

and only the probability density of finding the particle, |Ψ(x, t)|2 , can be known. The average value of position for a large

number of particles with the same wave function is expected to be

(7.6)
〈 x 〉 = ∫

−∞

∞
xP(x, t)dx = ∫

−∞

∞
xΨ* (x, t)Ψ(x, t)dx.

This is called the expectation value of the position. It is usually written

(7.7)
〈 x 〉 = ∫

−∞

∞
Ψ* (x, t)xΨ(x, t)dx,

where the x is sandwiched between the wave functions. The reason for this will become apparent soon. Formally, x is called
the position operator.

At this point, it is important to stress that a wave function can be written in terms of other quantities as well, such as velocity
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(v), momentum (p), and kinetic energy (K). The expectation value of momentum, for example, can be written

(7.8)
〈 p 〉 = ∫

−∞

∞
Ψ* (p, t)pΨ(p, t)dp,

Where dp is used instead of dx to indicate an infinitesimal interval in momentum. In some cases, we know the wave function
in position, Ψ(x, t), but seek the expectation of momentum. The procedure for doing this is

(7.9)
〈 p 〉 = ⌠

⌡−∞

∞
Ψ* (x, t)⎛⎝−iℏ d

dx
⎞
⎠Ψ(x, t)dx,

where the quantity in parentheses, sandwiched between the wave functions, is called the momentum operator in the
x-direction. [The momentum operator in Equation 7.9 is said to be the position-space representation of the momentum
operator.] The momentum operator must act (operate) on the wave function to the right, and then the result must be
multiplied by the complex conjugate of the wave function on the left, before integration. The momentum operator in the
x-direction is sometimes denoted

(7.10)(px)op = −iℏ d
dx,

Momentum operators for the y- and z-directions are defined similarly. This operator and many others are derived in a more
advanced course in modern physics. In some cases, this derivation is relatively simple. For example, the kinetic energy
operator is just

(7.11)

(K)op = 1
2m(vx)op

2 =
(px)op

2

2m =
⎛
⎝−iℏ d

dx
⎞
⎠
2

2m = −ℏ2

2m
⎛
⎝

d
dx

⎞
⎠
⎛
⎝

d
dx

⎞
⎠.

Thus, if we seek an expectation value of kinetic energy of a particle in one dimension, two successive ordinary derivatives
of the wave function are required before integration.

Expectation-value calculations are often simplified by exploiting the symmetry of wave functions. Symmetric wave
functions can be even or odd. An even function is a function that satisfies

(7.12)ψ(x) = ψ( − x).

In contrast, an odd function is a function that satisfies

(7.13)ψ(x) = - ψ( − x).

An example of even and odd functions is shown in Figure 7.8. An even function is symmetric about the y-axis. This
function is produced by reflecting ψ(x) for x > 0 about the vertical y-axis. By comparison, an odd function is generated by

reflecting the function about the y-axis and then about the x-axis. (An odd function is also referred to as an anti-symmetric
function.)

Figure 7.8 Examples of even and odd wave functions.

In general, an even function times an even function produces an even function. A simple example of an even function is the

product x2 e−x2
(even times even is even). Similarly, an odd function times an odd function produces an even function,

such as x sin x (odd times odd is even). However, an odd function times an even function produces an odd function, such as

xe−x2
(odd times even is odd). The integral over all space of an odd function is zero, because the total area of the function

above the x-axis cancels the (negative) area below it. As the next example shows, this property of odd functions is very
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useful.

Example 7.3

Expectation Value (Part I)

The normalized wave function of a particle is

ψ(x) = e
−|x|/x0/ x0.

Find the expectation value of position.

Strategy

Substitute the wave function into Equation 7.7 and evaluate. The position operator introduces a multiplicative
factor only, so the position operator need not be “sandwiched.”

Solution

First multiply, then integrate:

〈 x 〉 = ∫
−∞

+∞
dxx|ψ(x)|  2 = ⌠

⌡−∞

+∞

dxx|e−|x|/x0
x0 |

 2

= 1
x0 ∫

−∞

+∞
dxxe

−2|x|/x0 = 0.

Significance

The function in the integrand (xe
−2|x|/x0) is odd since it is the product of an odd function (x) and an even function

(e
−2|x|/x0) . The integral vanishes because the total area of the function about the x-axis cancels the (negative)

area below it. The result ( 〈 x 〉 = 0) is not surprising since the probability density function is symmetric about

x = 0 .

Example 7.4

Expectation Value (Part II)

The time-dependent wave function of a particle confined to a region between 0 and L is

ψ(x, t) = Ae−iωt sin(πx/L)

where ω is angular frequency and E is the energy of the particle. (Note: The function varies as a sine because

of the limits (0 to L). When x = 0, the sine factor is zero and the wave function is zero, consistent with the

boundary conditions.) Calculate the expectation values of position, momentum, and kinetic energy.

Strategy

We must first normalize the wave function to find A. Then we use the operators to calculate the expectation
values.

Solution

Computation of the normalization constant:

1 = ∫
0

L
dxψ* (x)ψ(x) = ⌠

⌡
0

L
dx⎛

⎝Ae+iωt sin πx
L

⎞
⎠
⎛
⎝Ae−iωt sin πx

L
⎞
⎠ = A2 ∫

0

L
dx sin2 πx

L = A2 L
2 ⇒ A = 2

L.

The expectation value of position is
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7.3

〈 x 〉 = ∫
0

L
dxψ* (x)xψ(x) = ⌠

⌡
0

L
dx⎛

⎝Ae+iωt sin πx
L

⎞
⎠x

⎛
⎝Ae−iωt sin πx

L
⎞
⎠ = A2 ⌠

⌡
0

L

dxx sin2 πx
L = A2 L2

4 = L
2.

The expectation value of momentum in the x-direction also requires an integral. To set this integral up, the
associated operator must— by rule—act to the right on the wave function ψ(x) :

−iℏ d
dxψ(x) = −iℏ d

dxAe−iωt sin πx
L = −iAh

2Le−iωt cos πx
L  .

Therefore, the expectation value of momentum is

〈 p 〉 = ⌠
⌡
0

L
dx⎛

⎝Ae+iωt sin πx
L

⎞
⎠
⎛
⎝−iAh

2Le−iωt cos πx
L

⎞
⎠ = −iA2 h

4L ∫
0

L
dx sin 2πx

L = 0.

The function in the integral is a sine function with a wavelength equal to the width of the well, L—an odd function
about x = L/2 . As a result, the integral vanishes.

The expectation value of kinetic energy in the x-direction requires the associated operator to act on the wave
function:

− ℏ2

2m
d2

dx2ψ(x) = − ℏ2

2m
d2

dx2 Ae−iωt sin πx
L = − ℏ2

2mAe−iωt d2

dx2 sin πx
L = Ah2

2mL2e−iωt sin πx
L .

Thus, the expectation value of the kinetic energy is

〈 K 〉 = ⌠
⌡
0

L

dx⎛
⎝Ae+iωt sin πx

L
⎞
⎠
⎛
⎝

Ah2

2mL2e−iωt sin πx
L

⎞
⎠

= A2 h2

2mL2∫
0

L
dx sin2 πx

L = A2 h2

2mL2
L
2 = h2

2mL2  .

Significance

The average position of a large number of particles in this state is L/2. The average momentum of these particles
is zero because a given particle is equally likely to be moving right or left. However, the particle is not at rest
because its average kinetic energy is not zero. Finally, the probability density is

|ψ |  2 = (2/L)sin2(πx/L).

This probability density is largest at location L/2 and is zero at x = 0 and at x = L. Note that these conclusions

do not depend explicitly on time.

Check Your Understanding For the particle in the above example, find the probability of locating it
between positions 0 and L/4

Quantum mechanics makes many surprising predictions. However, in 1920, Niels Bohr (founder of the Niels Bohr Institute
in Copenhagen, from which we get the term “Copenhagen interpretation”) asserted that the predictions of quantum
mechanics and classical mechanics must agree for all macroscopic systems, such as orbiting planets, bouncing balls, rocking
chairs, and springs. This correspondence principle is now generally accepted. It suggests the rules of classical mechanics
are an approximation of the rules of quantum mechanics for systems with very large energies. Quantum mechanics describes
both the microscopic and macroscopic world, but classical mechanics describes only the latter.
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7.2 | The Heisenberg Uncertainty Principle

Learning Objectives

By the end of this section, you will be able to:

• Describe the physical meaning of the position-momentum uncertainty relation

• Explain the origins of the uncertainty principle in quantum theory

• Describe the physical meaning of the energy-time uncertainty relation

Heisenberg’s uncertainty principle is a key principle in quantum mechanics. Very roughly, it states that if we know
everything about where a particle is located (the uncertainty of position is small), we know nothing about its momentum
(the uncertainty of momentum is large), and vice versa. Versions of the uncertainty principle also exist for other quantities
as well, such as energy and time. We discuss the momentum-position and energy-time uncertainty principles separately.

Momentum and Position
To illustrate the momentum-position uncertainty principle, consider a free particle that moves along the x-direction. The
particle moves with a constant velocity u and momentum p = mu . According to de Broglie’s relations, p = ℏk and

E = ℏω . As discussed in the previous section, the wave function for this particle is given by

(7.14)ψk(x, t) = A[cos(ω t − k x) − i sin(ω t − k x)] = Ae−i(ω t − k x) = Ae−i ω t ei k x

and the probability density |ψk(x, t)|  2 = A2 is uniform and independent of time. The particle is equally likely to be

found anywhere along the x-axis but has definite values of wavelength and wave number, and therefore momentum. The
uncertainty of position is infinite (we are completely uncertain about position) and the uncertainty of the momentum is zero
(we are completely certain about momentum). This account of a free particle is consistent with Heisenberg’s uncertainty
principle.

Similar statements can be made of localized particles. In quantum theory, a localized particle is modeled by a linear
superposition of free-particle (or plane-wave) states called a wave packet. An example of a wave packet is shown in
Figure 7.9. A wave packet contains many wavelengths and therefore by de Broglie’s relations many momenta—possible in
quantum mechanics! This particle also has many values of position, although the particle is confined mostly to the interval
Δx . The particle can be better localized (Δx can be decreased) if more plane-wave states of different wavelengths or

momenta are added together in the right way (Δp is increased). According to Heisenberg, these uncertainties obey the

following relation.

The Heisenberg Uncertainty Principle

The product of the uncertainty in position of a particle and the uncertainty in its momentum can never be less than
one-half of the reduced Planck constant:

(7.15)Δx Δp ≥ ℏ/2.

This relation expresses Heisenberg’s uncertainty principle. It places limits on what we can know about a particle from
simultaneous measurements of position and momentum. If Δx is large, Δp is small, and vice versa. Equation 7.15 can

be derived in a more advanced course in modern physics. Reflecting on this relation in his work The Physical Principles of
the Quantum Theory, Heisenberg wrote “Any use of the words ‘position’ and ‘velocity’ with accuracy exceeding that given
by [the relation] is just as meaningless as the use of words whose sense is not defined.”
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Figure 7.9 Adding together several plane waves of different
wavelengths can produce a wave that is relatively localized.

Note that the uncertainty principle has nothing to do with the precision of an experimental apparatus. Even for perfect
measuring devices, these uncertainties would remain because they originate in the wave-like nature of matter. The precise
value of the product ΔxΔp depends on the specific form of the wave function. Interestingly, the Gaussian function (or

bell-curve distribution) gives the minimum value of the uncertainty product: Δx Δp = ℏ/2.

Example 7.5

The Uncertainty Principle Large and Small

Determine the minimum uncertainties in the positions of the following objects if their speeds are known with a

precision of 1.0 × 10−3 m/s : (a) an electron and (b) a bowling ball of mass 6.0 kg.

Strategy

Given the uncertainty in speed Δu = 1.0 × 10−3 m/s , we have to first determine the uncertainty in momentum

Δp = m Δu and then invert Equation 7.15 to find the uncertainty in position Δx = ℏ/(2Δp) .

Solution
a. For the electron:

Δp = mΔu = (9.1 × 10−31 kg)(1.0 × 10−3 m/s) = 9.1 × 10−34 kg · m/s ,
Δx = ℏ

2 Δp = 5.8 cm.

b. For the bowling ball:

Δp = mΔu = (6.0 kg)(1.0 × 10−3 m/s) = 6.0 × 10−3 kg · m/s ,
Δx = ℏ

2 Δp = 8.8 × 10−33 m .

Significance

Unlike the position uncertainty for the electron, the position uncertainty for the bowling ball is immeasurably
small. Planck’s constant is very small, so the limitations imposed by the uncertainty principle are not noticeable
in macroscopic systems such as a bowling ball.
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Example 7.6

Uncertainty and the Hydrogen Atom

Estimate the ground-state energy of a hydrogen atom using Heisenberg’s uncertainty principle. (Hint: According
to early experiments, the size of a hydrogen atom is approximately 0.1 nm.)

Strategy

An electron bound to a hydrogen atom can be modeled by a particle bound to a one-dimensional box of length
L = 0.1 nm. The ground-state wave function of this system is a half wave, like that given in Example 7.1.

This is the largest wavelength that can “fit” in the box, so the wave function corresponds to the lowest energy
state. Note that this function is very similar in shape to a Gaussian (bell curve) function. We can take the average
energy of a particle described by this function (E) as a good estimate of the ground state energy (E0) . This

average energy of a particle is related to its average of the momentum squared, which is related to its momentum
uncertainty.

Solution

To solve this problem, we must be specific about what is meant by “uncertainty of position” and “uncertainty of
momentum.” We identify the uncertainty of position (Δx) with the standard deviation of position (σx) , and the

uncertainty of momentum (Δp) with the standard deviation of momentum (σ p) . For the Gaussian function, the

uncertainty product is

σx σ p = ℏ
2,

where

σx
2 = x2 − x– 2 and σ p

2 = p2 − p2.

The particle is equally likely to be moving left as moving right, so p– = 0 . Also, the uncertainty of position is

comparable to the size of the box, so σx = L. The estimated ground state energy is therefore

E0 = EGaussian = p2
–

m =
σ p

2

2m = 1
2m

⎛
⎝

ℏ
2σx

⎞
⎠

2
= 1

2m
⎛
⎝

ℏ
2L

⎞
⎠
2

= ℏ2

8mL2.

Multiplying numerator and denominator by c2 gives

E0 = (ℏc)2

8(mc2)L2 = (197.3 eV · nm)2

8⎛
⎝0.511 · 106 eV⎞

⎠(0.1 nm)2 = 0.952 eV ≈ 1 eV.

Significance

Based on early estimates of the size of a hydrogen atom and the uncertainty principle, the ground-state energy
of a hydrogen atom is in the eV range. The ionization energy of an electron in the ground-state energy is
approximately 10 eV, so this prediction is roughly confirmed. (Note: The product ℏc is often a useful value in

performing calculations in quantum mechanics.)

Energy and Time
Another kind of uncertainty principle concerns uncertainties in simultaneous measurements of the energy of a quantum state
and its lifetime,

(7.16)ΔEΔt ≥ ℏ
2,

where ΔE is the uncertainty in the energy measurement and Δt is the uncertainty in the lifetime measurement. The
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energy-time uncertainty principle does not result from a relation of the type expressed by Equation 7.15 for technical
reasons beyond this discussion. Nevertheless, the general meaning of the energy-time principle is that a quantum state that
exists for only a short time cannot have a definite energy. The reason is that the frequency of a state is inversely proportional
to time and the frequency connects with the energy of the state, so to measure the energy with good precision, the state must
be observed for many cycles.

To illustrate, consider the excited states of an atom. The finite lifetimes of these states can be deduced from the shapes
of spectral lines observed in atomic emission spectra. Each time an excited state decays, the emitted energy is slightly
different and, therefore, the emission line is characterized by a distribution of spectral frequencies (or wavelengths) of the
emitted photons. As a result, all spectral lines are characterized by spectral widths. The average energy of the emitted photon
corresponds to the theoretical energy of the excited state and gives the spectral location of the peak of the emission line.
Short-lived states have broad spectral widths and long-lived states have narrow spectral widths.

Example 7.7

Atomic Transitions

An atom typically exists in an excited state for about Δt = 10−8 s . Estimate the uncertainty Δ  f in the frequency

of emitted photons when an atom makes a transition from an excited state with the simultaneous emission of a

photon with an average frequency of f = 7.1 × 1014 Hz . Is the emitted radiation monochromatic?

Strategy

We invert Equation 7.16 to obtain the energy uncertainty ΔE ≈ ℏ/2Δt and combine it with the photon energy

E = h  f to obtain Δ  f . To estimate whether or not the emission is monochromatic, we evaluate Δ f / f .

Solution

The spread in photon energies is Δ E = hΔ  f . Therefore,

ΔE ≈ ℏ
2Δt ⇒ hΔ f ≈ ℏ

2Δt ⇒ Δ f ≈ 1
4πΔt = 1

4π(10−8 s)
= 8.0 × 106 Hz,

Δ f
f = 8.0 × 106 Hz

7.1 × 1014 Hz
= 1.1 × 10−8.

Significance

Because the emitted photons have their frequencies within 1.1 × 10−6 percent of the average frequency, the

emitted radiation can be considered monochromatic.

Check Your Understanding A sodium atom makes a transition from the first excited state to the ground

state, emitting a 589.0-nm photon with energy 2.105 eV. If the lifetime of this excited state is 1.6 × 10−8 s ,

what is the uncertainty in energy of this excited state? What is the width of the corresponding spectral line?

7.3 | The Schrӧdinger Equation

Learning Objectives

By the end of this section, you will be able to:

• Describe the role Schrӧdinger’s equation plays in quantum mechanics

• Explain the difference between time-dependent and -independent Schrӧdinger’s equations

• Interpret the solutions of Schrӧdinger’s equation

In the preceding two sections, we described how to use a quantum mechanical wave function and discussed Heisenberg’s
uncertainty principle. In this section, we present a complete and formal theory of quantum mechanics that can be used to
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make predictions. In developing this theory, it is helpful to review the wave theory of light. For a light wave, the electric
field E(x,t) obeys the relation

(7.17)∂2E
∂ x2 = 1

c2
∂2E
∂ t2 ,

where c is the speed of light and the symbol ∂ represents a partial derivative. (Recall from Oscillations (http://cnx.org/

content/m58360/latest/) that a partial derivative is closely related to an ordinary derivative, but involves functions of
more than one variable. When taking the partial derivative of a function by a certain variable, all other variables are held

constant.) A light wave consists of a very large number of photons, so the quantity |E(x, t)|2 can interpreted as a probability

density of finding a single photon at a particular point in space (for example, on a viewing screen).

There are many solutions to this equation. One solution of particular importance is

(7.18)E(x, t) = A sin(kx − ωt),

where A is the amplitude of the electric field, k is the wave number, and ω is the angular frequency. Combing this equation

with Equation 7.17 gives

(7.19)k2 = ω2

c2 .

According to de Broglie’s equations, we have p = ℏk and E = ℏω . Substituting these equations in Equation 7.19 gives

(7.20)p = E
c ,

or

(7.21)E = pc.

Therefore, according to Einstein’s general energy-momentum equation (Equation 5.11), Equation 7.17 describes a
particle with a zero rest mass. This is consistent with our knowledge of a photon.

This process can be reversed. We can begin with the energy-momentum equation of a particle and then ask what wave
equation corresponds to it. The energy-momentum equation of a nonrelativistic particle in one dimension is

(7.22)
E = p2

2m + U(x, t),

where p is the momentum, m is the mass, and U is the potential energy of the particle. The wave equation that goes with it
turns out to be a key equation in quantum mechanics, called Schrӧdinger’s time-dependent equation.

The Schrӧdinger Time-Dependent Equation

The equation describing the energy and momentum of a wave function is known as the Schrӧdinger equation:

(7.23)
− ℏ2

2m
∂2Ψ(x, t)

∂ x2 + U(x, t)Ψ(x, t) = iℏ∂Ψ(x, t)
∂ t .

As described in Potential Energy and Conservation of Energy (http://cnx.org/content/m58311/latest/) , the
force on the particle described by this equation is given by

(7.24)F = − ∂U(x, t)
∂ x .

This equation plays a role in quantum mechanics similar to Newton’s second law in classical mechanics. Once the
potential energy of a particle is specified—or, equivalently, once the force on the particle is specified—we can solve this
differential equation for the wave function. The solution to Newton’s second law equation (also a differential equation) in
one dimension is a function x(t) that specifies where an object is at any time t. The solution to Schrӧdinger’s time-dependent
equation provides a tool—the wave function—that can be used to determine where the particle is likely to be. This equation
can be also written in two or three dimensions. Solving Schrӧdinger’s time-dependent equation often requires the aid of a
computer.

Consider the special case of a free particle. A free particle experiences no force (F = 0). Based on Equation 7.24, this
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7.5

requires only that

(7.25)U(x, t) = U0 = constant.

For simplicity, we set U0 = 0 . Schrӧdinger’s equation then reduces to

(7.26)
− ℏ2

2m
∂2Ψ(x, t)

∂ x2 = iℏ∂Ψ(x, t)
∂ t .

A valid solution to this equation is

(7.27)Ψ(x, t) = Aei(kx − ωt).

Not surprisingly, this solution contains an imaginary number (i = −1) because the differential equation itself contains

an imaginary number. As stressed before, however, quantum-mechanical predictions depend only on |Ψ(x, t)|2 , which

yields completely real values. Notice that the real plane-wave solutions, Ψ(x, t) = A sin(kx − ωt) and

Ψ(x, t) = A cos(kx − ωt), do not obey Schrödinger’s equation. The temptation to think that a wave function can be seen,

touched, and felt in nature is eliminated by the appearance of an imaginary number. In Schrӧdinger’s theory of quantum
mechanics, the wave function is merely a tool for calculating things.

If the potential energy function (U) does not depend on time, it is possible to show that

(7.28)Ψ(x, t) = ψ(x)e−iωt

satisfies Schrӧdinger’s time-dependent equation, where ψ(x) is a time-independent function and e−iωt is a

space-independent function. In other words, the wave function is separable into two parts: a space-only part and a time-

only part. The factor e−iωt is sometimes referred to as a time-modulation factor since it modifies the space-only function.

According to de Broglie, the energy of a matter wave is given by E = ℏω , where E is its total energy. Thus, the above

equation can also be written as

(7.29)Ψ(x, t) = ψ(x)e−iEt/ℏ.

Any linear combination of such states (mixed state of energy or momentum) is also valid solution to this equation. Such
states can, for example, describe a localized particle (see Figure 7.9)

Check Your Understanding A particle with mass m is moving along the x-axis in a potential given by

the potential energy function U(x) = 0.5mω2 x2 . Compute the product Ψ(x, t)* U(x)Ψ(x, t). Express your

answer in terms of the time-independent wave function, ψ(x).

Combining Equation 7.23 and Equation 7.28, Schrödinger’s time-dependent equation reduces to

(7.30)
− ℏ2

2m
d2 ψ(x)

dx2 + U(x)ψ(x) = Eψ(x),

where E is the total energy of the particle (a real number). This equation is called Schrӧdinger’s time-independent
equation. Notice that we use “big psi” (Ψ) for the time-dependent wave function and “little psi” (ψ) for the time-

independent wave function. The wave-function solution to this equation must be multiplied by the time-modulation factor
to obtain the time-dependent wave function.

In the next sections, we solve Schrӧdinger’s time-independent equation for three cases: a quantum particle in a box, a
simple harmonic oscillator, and a quantum barrier. These cases provide important lessons that can be used to solve more
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complicated systems. The time-independent wave function ψ(x) solutions must satisfy three conditions:

• ψ(x) must be a continuous function.

• The first derivative of ψ(x) with respect to space, dψ(x)/dx , must be continuous, unless V(x) = ∞ .

• ψ(x) must not diverge (“blow up”) at x = ±∞.

The first condition avoids sudden jumps or gaps in the wave function. The second condition requires the wave function to
be smooth at all points, except in special cases. (In a more advanced course on quantum mechanics, for example, potential
spikes of infinite depth and height are used to model solids). The third condition requires the wave function be normalizable.

This third condition follows from Born’s interpretation of quantum mechanics. It ensures that |ψ(x)|2 is a finite number so

we can use it to calculate probabilities.

Check Your Understanding Which of the following wave functions is a valid wave-function solution
for Schrӧdinger’s equation?

7.4 | The Quantum Particle in a Box

Learning Objectives

By the end of this section, you will be able to:

• Describe how to set up a boundary-value problem for the stationary Schrӧdinger equation

• Explain why the energy of a quantum particle in a box is quantized

• Describe the physical meaning of stationary solutions to Schrӧdinger’s equation and the
connection of these solutions with time-dependent quantum states

• Explain the physical meaning of Bohr’s correspondence principle

In this section, we apply Schrӧdinger’s equation to a particle bound to a one-dimensional box. This special case provides
lessons for understanding quantum mechanics in more complex systems. The energy of the particle is quantized as a
consequence of a standing wave condition inside the box.

Consider a particle of mass m that is allowed to move only along the x-direction and its motion is confined to the region

between hard and rigid walls located at x = 0 and at x = L (Figure 7.10). Between the walls, the particle moves freely.

This physical situation is called the infinite square well, described by the potential energy function

(7.31)U(x) =
⎧

⎩
⎨
0, 0 ≤ x ≤ L,
∞, otherwise.

Combining this equation with Schrӧdinger’s time-independent wave equation gives

(7.32)−ℏ2

2m
d2 ψ(x)

dx2 = Eψ(x), for 0 ≤ x ≤ L

where E is the total energy of the particle. What types of solutions do we expect? The energy of the particle is a positive
number, so if the value of the wave function is positive (right side of the equation), the curvature of the wave function is
negative, or concave down (left side of the equation). Similarly, if the value of the wave function is negative (right side of
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the equation), the curvature of the wave function is positive or concave up (left side of equation). This condition is met by
an oscillating wave function, such as a sine or cosine wave. Since these waves are confined to the box, we envision standing
waves with fixed endpoints at x = 0 and x = L .

Figure 7.10 The potential energy function that confines the
particle in a one-dimensional box.

Solutions ψ(x) to this equation have a probabilistic interpretation. In particular, the square |ψ(x)|2 represents the

probability density of finding the particle at a particular location x. This function must be integrated to determine the
probability of finding the particle in some interval of space. We are therefore looking for a normalizable solution that
satisfies the following normalization condition:

(7.33)
∫
0

L
dx|ψ(x)|2 = 1.

The walls are rigid and impenetrable, which means that the particle is never found beyond the wall. Mathematically, this
means that the solution must vanish at the walls:

(7.34)ψ(0) = ψ(L) = 0.

We expect oscillating solutions, so the most general solution to this equation is

(7.35)ψk(x) = Ak cos kx + Bk sin kx

where k is the wave number, and Ak and Bk are constants. Applying the boundary condition expressed by Equation 7.34

gives

(7.36)ψk(0) = Ak cos(k · 0) + Bk sin(k · 0) = Ak = 0.

Because we have Ak = 0 , the solution must be

(7.37)ψk(x) = Bk sin kx.

If Bk is zero, ψk (x) = 0 for all values of x and the normalization condition, Equation 7.33, cannot be satisfied.

Assuming Bk ≠ 0 , Equation 7.34 for x = L then gives

(7.38)0 = Bk sin(kL) ⇒ sin(kL) = 0 ⇒ kL = nπ, n = 1, 2, 3,...

We discard the n = 0 solution because ψ(x) for this quantum number would be zero everywhere—an un-normalizable

and therefore unphysical solution. Substituting Equation 7.37 into Equation 7.32 gives

(7.39)− ℏ2

2m
d2

dx2
⎛
⎝Bk sin(kx)⎞

⎠ = E⎛
⎝Bk sin(kx)⎞

⎠.

Computing these derivatives leads to

(7.40)E = Ek = ℏ2 k2

2m .
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According to de Broglie, p = ℏk, so this expression implies that the total energy is equal to the kinetic energy, consistent

with our assumption that the “particle moves freely.” Combining the results of Equation 7.38 and Equation 7.40 gives

(7.41)En = n2 π2 ℏ2

2mL2, n = 1, 2, 3, ...

Strange! A particle bound to a one-dimensional box can only have certain discrete (quantized) values of energy. Further, the
particle cannot have a zero kinetic energy—it is impossible for a particle bound to a box to be “at rest.”

To evaluate the allowed wave functions that correspond to these energies, we must find the normalization constant Bn . We

impose the normalization condition Equation 7.33 on the wave function

(7.42)ψn(x) = Bn sinnπx/L

1 = ∫
0

L
dx|ψn(x)|2 = ∫

0

L
dxBn

2 sin2 nπ
L x = Bn

2 ∫
0

L
dx sin2 nπ

L x = Bn
2 L

2 ⇒ Bn = 2
L.

Hence, the wave functions that correspond to the energy values given in Equation 7.41 are

(7.43)ψn(x) = 2
L sin nπx

L , n = 1, 2, 3, ...

For the lowest energy state or ground state energy, we have

(7.44)E1 = π2 ℏ2

2mL2, ψ1(x) = 2
L sin⎛

⎝
πx
L

⎞
⎠.

All other energy states can be expressed as

(7.45)En = n2 E1, ψn(x) = 2
L sin⎛

⎝
nπx
L

⎞
⎠.

The index n is called the energy quantum number or principal quantum number. The state for n = 2 is the first excited

state, the state for n = 3 is the second excited state, and so on. The first three quantum states (for n = 1, 2, and 3) of a

particle in a box are shown in Figure 7.11.

The wave functions in Equation 7.45 are sometimes referred to as the “states of definite energy.” Particles in these states
are said to occupy energy levels, which are represented by the horizontal lines in Figure 7.11. Energy levels are analogous
to rungs of a ladder that the particle can “climb” as it gains or loses energy.

The wave functions in Equation 7.45 are also called stationary states and standing wave states. These functions are

“stationary,” because their probability density functions, |Ψ(x, t)|2 , do not vary in time, and “standing waves” because

their real and imaginary parts oscillate up and down like a standing wave—like a rope waving between two children on a
playground. Stationary states are states of definite energy [Equation 7.45], but linear combinations of these states, such
as ψ(x) = aψ1 + bψ2 (also solutions to Schrӧdinger’s equation) are states of mixed energy.
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Figure 7.11 The first three quantum states of a quantum particle in a box for principal quantum
numbers n = 1, 2, and 3 : (a) standing wave solutions and (b) allowed energy states.

Energy quantization is a consequence of the boundary conditions. If the particle is not confined to a box but wanders freely,
the allowed energies are continuous. However, in this case, only certain energies (E1, 4E1, 9E1, …) are allowed. The

energy difference between adjacent energy levels is given by

(7.46)ΔEn + 1, n = En + 1 − En = (n + 1)2 E1 − n2 E1 = (2n + 1)E1.

Conservation of energy demands that if the energy of the system changes, the energy difference is carried in some other
form of energy. For the special case of a charged particle confined to a small volume (for example, in an atom), energy
changes are often carried away by photons. The frequencies of the emitted photons give us information about the energy
differences (spacings) of the system and the volume of containment—the size of the “box” [see Equation 7.44].

Example 7.8

A Simple Model of the Nucleus

Suppose a proton is confined to a box of width L = 1.00 × 10−14 m (a typical nuclear radius). What are the

energies of the ground and the first excited states? If the proton makes a transition from the first excited state to
the ground state, what are the energy and the frequency of the emitted photon?

Strategy

If we assume that the proton confined in the nucleus can be modeled as a quantum particle in a box, all we need

to do is to use Equation 7.41 to find its energies E1 and E2 . The mass of a proton is m = 1.76 × 10−27 kg.
The emitted photon carries away the energy difference ΔE = E2 − E1. We can use the relation E f = h f to find

its frequency f.

Solution

The ground state:

E1 = π2 ℏ2

2m L2 = π2 (1.05 × 10−34 J · s)2

2(1.67 × 10−27 kg) (1.00 × 10−14 m)2 = 3.28 × 10−13 J = 2.05 MeV.
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The first excited state: E2 = 22 E1 = 4(2.05 MeV) = 8.20 MeV .

The energy of the emitted photon is E f = ΔE = E2 − E1 = 8.20 MeV − 2.05 MeV = 6.15 MeV .

The frequency of the emitted photon is

f =
E f
h = 6.15 MeV

4.14 × 10−21 MeV · s
= 1.49 × 1021 Hz.

Significance

This is the typical frequency of a gamma ray emitted by a nucleus. The energy of this photon is about 10 million
times greater than that of a visible light photon.

The expectation value of the position for a particle in a box is given by

(7.47)
〈 x 〉 = ∫

0

L
dxψn* (x)xψn(x) = ∫

0

L
dxx|ψn* (x)|2 = ∫

0

L
dxx2

Lsin2 nπx
L = L

2.

We can also find the expectation value of the momentum or average momentum of a large number of particles in a given
state:

(7.48)
〈 p 〉 = ⌠

⌡
0

L
dxψn* (x)⎡⎣−iℏ d

dxψn(x)⎤⎦

= −iℏ⌠
⌡
0

L
dx 2

L sin nπx
L

⎡
⎣

d
dx

2
L sin nπx

L
⎤
⎦ = −i2ℏ

L ∫
0

L
dx sin nπx

L
⎡
⎣
nπ
L cos nπx

L
⎤
⎦

= −i2nπℏ
L2 ∫

0

L
dx1

2 sin 2nπx
L = −inπℏ

L2
L

2nπ ∫
0

2πn
dφ sin φ = −i ℏ

2L · 0 = 0.

Thus, for a particle in a state of definite energy, the average position is in the middle of the box and the average momentum
of the particle is zero—as it would also be for a classical particle. Note that while the minimum energy of a classical particle
can be zero (the particle can be at rest in the middle of the box), the minimum energy of a quantum particle is nonzero and
given by Equation 7.44. The average particle energy in the nth quantum state—its expectation value of energy—is

(7.49)En = 〈 E 〉 = n2 π2 ℏ2

2m .

The result is not surprising because the standing wave state is a state of definite energy. Any energy measurement of this
system must return a value equal to one of these allowed energies.

Our analysis of the quantum particle in a box would not be complete without discussing Bohr’s correspondence principle.
This principle states that for large quantum numbers, the laws of quantum physics must give identical results as the laws
of classical physics. To illustrate how this principle works for a quantum particle in a box, we plot the probability density
distribution

(7.50)|ψn(x)|2 = 2
Lsin2(nπx/L)

for finding the particle around location x between the walls when the particle is in quantum state ψn . Figure 7.12 shows

these probability distributions for the ground state, for the first excited state, and for a highly excited state that corresponds
to a large quantum number. We see from these plots that when a quantum particle is in the ground state, it is most likely to be
found around the middle of the box, where the probability distribution has the largest value. This is not so when the particle
is in the first excited state because now the probability distribution has the zero value in the middle of the box, so there is
no chance of finding the particle there. When a quantum particle is in the first excited state, the probability distribution has
two maxima, and the best chance of finding the particle is at positions close to the locations of these maxima. This quantum
picture is unlike the classical picture.

Chapter 7 | Quantum Mechanics 325



Figure 7.12 The probability density distribution |ψn(x)|2 for a quantum particle in a box for: (a)

the ground state, n = 1 ; (b) the first excited state, n = 2 ; and, (c) the nineteenth excited state,

n = 20 .

The probability density of finding a classical particle between x and x + Δx depends on how much time Δt the particle

spends in this region. Assuming that its speed u is constant, this time is Δt = Δx/u, which is also constant for any location

between the walls. Therefore, the probability density of finding the classical particle at x is uniform throughout the box, and
there is no preferable location for finding a classical particle. This classical picture is matched in the limit of large quantum
numbers. For example, when a quantum particle is in a highly excited state, shown in Figure 7.12, the probability density
is characterized by rapid fluctuations and then the probability of finding the quantum particle in the interval Δx does not

depend on where this interval is located between the walls.

Example 7.9

A Classical Particle in a Box

A small 0.40-kg cart is moving back and forth along an air track between two bumpers located 2.0 m apart.
We assume no friction; collisions with the bumpers are perfectly elastic so that between the bumpers, the car
maintains a constant speed of 0.50 m/s. Treating the cart as a quantum particle, estimate the value of the principal
quantum number that corresponds to its classical energy.

Strategy

We find the kinetic energy K of the cart and its ground state energy E1 as though it were a quantum particle. The

energy of the cart is completely kinetic, so K = n2 E1 (Equation 7.45). Solving for n gives n = (K/E1)1/2 .

Solution

The kinetic energy of the cart is

K = 1
2mu2 = 1

2(0.40 kg)(0.50 m/s)2 = 0.050 J.

The ground state of the cart, treated as a quantum particle, is
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7.7

E1 = π2 ℏ2

2mL2 = π2 (1.05 × 10−34 J · s)2

2(0.40 kg)(2.0 m)2 = 1.700 × 10−68 J.

Therefore, n = (K/E1)1/2 = (0.050/1.700 × 10−68)1/2 = 1.2 × 1033 .

Significance

We see from this example that the energy of a classical system is characterized by a very large quantum
number. Bohr’s correspondence principle concerns this kind of situation. We can apply the formalism of quantum
mechanics to any kind of system, quantum or classical, and the results are correct in each case. In the limit of
high quantum numbers, there is no advantage in using quantum formalism because we can obtain the same results
with the less complicated formalism of classical mechanics. However, we cannot apply classical formalism to a
quantum system in a low-number energy state.

Check Your Understanding (a) Consider an infinite square well with wall boundaries x = 0 and

x = L . What is the probability of finding a quantum particle in its ground state somewhere between x = 0 and

x = L/4 ? (b) Repeat question (a) for a classical particle.

Having found the stationary states ψn(x) and the energies En by solving the time-independent Schrӧdinger equation

Equation 7.32, we use Equation 7.28 to write wave functions Ψn(x, t) that are solutions of the time-dependent

Schrӧdinger’s equation given by Equation 7.23. For a particle in a box this gives

(7.51)Ψn(x, t) = e−iωn t ψn(x) = 2
Le−iEn t/ℏ sin nπx

L , n = 1, 2, 3, ...

where the energies are given by Equation 7.41.

The quantum particle in a box model has practical applications in a relatively newly emerged field of optoelectronics,
which deals with devices that convert electrical signals into optical signals. This model also deals with nanoscale physical
phenomena, such as a nanoparticle trapped in a low electric potential bounded by high-potential barriers.

7.5 | The Quantum Harmonic Oscillator

Learning Objectives

By the end of this section, you will be able to:

• Describe the model of the quantum harmonic oscillator

• Identify differences between the classical and quantum models of the harmonic oscillator

• Explain physical situations where the classical and the quantum models coincide

Oscillations are found throughout nature, in such things as electromagnetic waves, vibrating molecules, and the gentle back-
and-forth sway of a tree branch. In previous chapters, we used Newtonian mechanics to study macroscopic oscillations,
such as a block on a spring and a simple pendulum. In this chapter, we begin to study oscillating systems using quantum
mechanics. We begin with a review of the classic harmonic oscillator.

The Classic Harmonic Oscillator
A simple harmonic oscillator is a particle or system that undergoes harmonic motion about an equilibrium position, such as
an object with mass vibrating on a spring. In this section, we consider oscillations in one-dimension only. Suppose a mass
moves back-and-forth along the

x-direction about the equilibrium position, x = 0 . In classical mechanics, the particle moves in response to a linear

restoring force given by Fx = −kx, where x is the displacement of the particle from its equilibrium position. The motion

takes place between two turning points, x = ±A , where A denotes the amplitude of the motion. The position of the object

varies periodically in time with angular frequency ω = k/m, which depends on the mass m of the oscillator and on the
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force constant k of the net force, and can be written as

(7.52)x(t) = A cos (ω  t + ϕ).

The total energy E of an oscillator is the sum of its kinetic energy K = mu2/2 and the elastic potential energy of the force

U(x) = k x2/2,

(7.53)E = 1
2mu2 + 1

2kx2.

At turning points x = ±A , the speed of the oscillator is zero; therefore, at these points, the energy of oscillation is solely

in the form of potential energy E = k A  2/2 . The plot of the potential energy U(x) of the oscillator versus its position x is a

parabola (Figure 7.13). The potential-energy function is a quadratic function of x, measured with respect to the equilibrium
position. On the same graph, we also plot the total energy E of the oscillator, as a horizontal line that intercepts the parabola
at x = ±A . Then the kinetic energy K is represented as the vertical distance between the line of total energy and the

potential energy parabola.

Figure 7.13 The potential energy well of a classical harmonic oscillator: The motion
is confined between turning points at x = −A and at x = + A . The energy of

oscillations is E = kA2/2.

In this plot, the motion of a classical oscillator is confined to the region where its kinetic energy is nonnegative, which is
what the energy relation Equation 7.53 says. Physically, it means that a classical oscillator can never be found beyond
its turning points, and its energy depends only on how far the turning points are from its equilibrium position. The energy
of a classical oscillator changes in a continuous way. The lowest energy that a classical oscillator may have is zero, which
corresponds to a situation where an object is at rest at its equilibrium position. The zero-energy state of a classical oscillator
simply means no oscillations and no motion at all (a classical particle sitting at the bottom of the potential well in Figure
7.13). When an object oscillates, no matter how big or small its energy may be, it spends the longest time near the turning
points, because this is where it slows down and reverses its direction of motion. Therefore, the probability of finding a
classical oscillator between the turning points is highest near the turning points and lowest at the equilibrium position. (Note
that this is not a statement of preference of the object to go to lower energy. It is a statement about how quickly the object
moves through various regions.)

The Quantum Harmonic Oscillator
One problem with this classical formulation is that it is not general. We cannot use it, for example, to describe vibrations of
diatomic molecules, where quantum effects are important. A first step toward a quantum formulation is to use the classical

expression k = m ω  2 to limit mention of a “spring” constant between the atoms. In this way the potential energy function

can be written in a more general form,
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(7.54)U(x) = 1
2mω  2 x  2.

Combining this expression with the time-independent Schrӧdinger equation gives

(7.55)
− ℏ

2m
d  2 ψ(x)

d x2 + 1
2mω  2 x  2 ψ(x) = Eψ(x).

To solve Equation 7.55—that is, to find the allowed energies E and their corresponding wave functions ψ(x) —we

require the wave functions to be symmetric about x = 0 (the bottom of the potential well) and to be normalizable. These

conditions ensure that the probability density |ψ(x)|  2 must be finite when integrated over the entire range of x from −∞
to +∞ . How to solve Equation 7.55 is the subject of a more advanced course in quantum mechanics; here, we simply

cite the results. The allowed energies are

(7.56)En = ⎛
⎝n + 1

2
⎞
⎠ℏω = 2n + 1

2 ℏω, n = 0, 1, 2, 3, ...

The wave functions that correspond to these energies (the stationary states or states of definite energy) are

(7.57)
ψn(x) = Nn e  − β  2 x  2 /2 Hn(βx), n = 0, 1, 2, 3, ...

where β = m  ω/ℏ , Nn is the normalization constant, and Hn(y) is a polynomial of degree n called a Hermite

polynomial. The first four Hermite polynomials are

H0 (y) = 1
H1 (y) = 2y
H2 (y) = 4y2 − 2

H3 (y) = 8y3 − 12y.

A few sample wave functions are given in Figure 7.14. As the value of the principal number increases, the solutions
alternate between even functions and odd functions about x = 0 .
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Figure 7.14 The first five wave functions of the quantum harmonic
oscillator. The classical limits of the oscillator’s motion are indicated by
vertical lines, corresponding to the classical turning points at x = ±A
of a classical particle with the same energy as the energy of a quantum
oscillator in the state indicated in the figure.

Example 7.10

Classical Region of Harmonic Oscillations

Find the amplitude A of oscillations for a classical oscillator with energy equal to the energy of a quantum
oscillator in the quantum state n.

Strategy

To determine the amplitude A, we set the classical energy E = kx2/2 = m ω2 A2/2 equal to En given by

Equation 7.56.

Solution

We obtain

En = m ω2 An
 2/2 ⇒ An = 2

m ω  2En = 2
m ω  2

2n + 1
2 ℏω = (2n + 1) ℏ

m ω.

Significance

As the quantum number n increases, the energy of the oscillator and therefore the amplitude of oscillation
increases (for a fixed natural angular frequency. For large n, the amplitude is approximately proportional to the
square root of the quantum number.

Several interesting features appear in this solution. Unlike a classical oscillator, the measured energies of a quantum
oscillator can have only energy values given by Equation 7.56. Moreover, unlike the case for a quantum particle in a box,
the allowable energy levels are evenly spaced,

(7.58)ΔE = En + 1 − En = 2(n + 1) + 1
2 ℏω − 2n + 1

2 ℏω = ℏω = h  f .

When a particle bound to such a system makes a transition from a higher-energy state to a lower-energy state, the smallest-
energy quantum carried by the emitted photon is necessarily hf. Similarly, when the particle makes a transition from a lower-
energy state to a higher-energy state, the smallest-energy quantum that can be absorbed by the particle is hf. A quantum
oscillator can absorb or emit energy only in multiples of this smallest-energy quantum. This is consistent with Planck’s
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7.8

hypothesis for the energy exchanges between radiation and the cavity walls in the blackbody radiation problem.

Example 7.11

Vibrational Energies of the Hydrogen Chloride Molecule

The HCl diatomic molecule consists of one chlorine atom and one hydrogen atom. Because the chlorine atom
is 35 times more massive than the hydrogen atom, the vibrations of the HCl molecule can be quite well
approximated by assuming that the Cl atom is motionless and the H atom performs harmonic oscillations due to
an elastic molecular force modeled by Hooke’s law. The infrared vibrational spectrum measured for hydrogen

chloride has the lowest-frequency line centered at f = 8.88 × 10  13 Hz . What is the spacing between the

vibrational energies of this molecule? What is the force constant k of the atomic bond in the HCl molecule?

Strategy

The lowest-frequency line corresponds to the emission of lowest-frequency photons. These photons are emitted
when the molecule makes a transition between two adjacent vibrational energy levels. Assuming that energy
levels are equally spaced, we use Equation 7.58 to estimate the spacing. The molecule is well approximated
by treating the Cl atom as being infinitely heavy and the H atom as the mass m that performs the oscillations.
Treating this molecular system as a classical oscillator, the force constant is found from the classical relation

k = m ω  2 .

Solution

The energy spacing is

ΔE = h  f = (4.14 × 10  − 15 eV · s)(8.88 × 10  13 Hz) = 0.368 eV.

The force constant is

k = m ω  2 = m (2π f )2 = (1.67 × 10  − 27 kg)(2π × 8.88 × 10  13 Hz)2 = 520 N/m.

Significance

The force between atoms in an HCl molecule is surprisingly strong. The typical energy released in energy
transitions between vibrational levels is in the infrared range. As we will see later, transitions in between
vibrational energy levels of a diatomic molecule often accompany transitions between rotational energy levels.

Check Your Understanding The vibrational frequency of the hydrogen iodide HI diatomic molecule is

6.69 × 10  13 Hz . (a) What is the force constant of the molecular bond between the hydrogen and the iodine

atoms? (b) What is the energy of the emitted photon when this molecule makes a transition between adjacent
vibrational energy levels?

The quantum oscillator differs from the classic oscillator in three ways:

First, the ground state of a quantum oscillator is E0 = ℏω/2, not zero. In the classical view, the lowest energy is zero. The

nonexistence of a zero-energy state is common for all quantum-mechanical systems because of omnipresent fluctuations
that are a consequence of the Heisenberg uncertainty principle. If a quantum particle sat motionless at the bottom of the
potential well, its momentum as well as its position would have to be simultaneously exact, which would violate the
Heisenberg uncertainty principle. Therefore, the lowest-energy state must be characterized by uncertainties in momentum
and in position, so the ground state of a quantum particle must lie above the bottom of the potential well.

Second, a particle in a quantum harmonic oscillator potential can be found with nonzero probability outside the interval
−A ≤ x ≤ + A . In a classic formulation of the problem, the particle would not have any energy to be in this region. The

probability of finding a ground-state quantum particle in the classically forbidden region is about 16%.

Third, the probability density distributions |ψn(x)|  2 for a quantum oscillator in the ground low-energy state, ψ0(x) , is

largest at the middle of the well (x = 0) . For the particle to be found with greatest probability at the center of the well, we

expect that the particle spends the most time there as it oscillates. This is opposite to the behavior of a classical oscillator,
in which the particle spends most of its time moving with relative small speeds near the turning points.
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7.9 Check Your Understanding Find the expectation value of the position for a particle in the ground state
of a harmonic oscillator using symmetry.

Quantum probability density distributions change in character for excited states, becoming more like the classical
distribution when the quantum number gets higher. We observe this change already for the first excited state of a quantum

oscillator because the distribution |ψ1(x)|  2 peaks up around the turning points and vanishes at the equilibrium position,

as seen in Figure 7.13. In accordance with Bohr’s correspondence principle, in the limit of high quantum numbers, the
quantum description of a harmonic oscillator converges to the classical description, which is illustrated in Figure 7.15.
The classical probability density distribution corresponding to the quantum energy of the n = 12 state is a reasonably good

approximation of the quantum probability distribution for a quantum oscillator in this excited state. This agreement becomes
increasingly better for highly excited states.

Figure 7.15 The probability density distribution for finding the quantum harmonic oscillator in its n = 12
quantum state. The dashed curve shows the probability density distribution of a classical oscillator with the
same energy.

7.6 | The Quantum Tunneling of Particles through

Potential Barriers

Learning Objectives

By the end of this section, you will be able to:

• Describe how a quantum particle may tunnel across a potential barrier

• Identify important physical parameters that affect the tunneling probability

• Identify the physical phenomena where quantum tunneling is observed

• Explain how quantum tunneling is utilized in modern technologies

Quantum tunneling is a phenomenon in which particles penetrate a potential energy barrier with a height greater than the
total energy of the particles. The phenomenon is interesting and important because it violates the principles of classical
mechanics. Quantum tunneling is important in models of the Sun and has a wide range of applications, such as the scanning
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tunneling microscope and the tunnel diode.

Tunneling and Potential Energy
To illustrate quantum tunneling, consider a ball rolling along a surface with a kinetic energy of 100 J. As the ball rolls,
it encounters a hill. The potential energy of the ball placed atop the hill is 10 J. Therefore, the ball (with 100 J of kinetic
energy) easily rolls over the hill and continues on. In classical mechanics, the probability that the ball passes over the hill
is exactly 1—it makes it over every time. If, however, the height of the hill is increased—a ball placed atop the hill has a
potential energy of 200 J—the ball proceeds only part of the way up the hill, stops, and returns in the direction it came. The
total energy of the ball is converted entirely into potential energy before it can reach the top of the hill. We do not expect,
even after repeated attempts, for the 100-J ball to ever be found beyond the hill. Therefore, the probability that the ball
passes over the hill is exactly 0, and probability it is turned back or “reflected” by the hill is exactly 1. The ball never makes
it over the hill. The existence of the ball beyond the hill is an impossibility or “energetically forbidden.”

However, according to quantum mechanics, the ball has a wave function and this function is defined over all space. The
wave function may be highly localized, but there is always a chance that as the ball encounters the hill, the ball will suddenly
be found beyond it. Indeed, this probability is appreciable if the “wave packet” of the ball is wider than the barrier.

View this interactive simulation (https://openstaxcollege.org/l/21intquatanvid) for a simulation of
tunneling.

In the language of quantum mechanics, the hill is characterized by a potential barrier. A finite-height square barrier is
described by the following potential-energy function:

(7.59)

U(x) =
⎧

⎩
⎨

0, when x < 0
U0, when 0 ≤ x ≤ L

0, when x > L.

The potential barrier is illustrated in Figure 7.16. When the height U0 of the barrier is infinite, the wave packet

representing an incident quantum particle is unable to penetrate it, and the quantum particle bounces back from the barrier
boundary, just like a classical particle. When the width L of the barrier is infinite and its height is finite, a part of the wave
packet representing an incident quantum particle can filter through the barrier boundary and eventually perish after traveling
some distance inside the barrier.
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Figure 7.16 A potential energy barrier of height U0 creates three

physical regions with three different wave behaviors. In region I
where x < 0 , an incident wave packet (incident particle) moves in

a potential-free zone and coexists with a reflected wave packet
(reflected particle). In region II, a part of the incident wave that has
not been reflected at x = 0 moves as a transmitted wave in a

constant potential U(x) = + U0 and tunnels through to region III

at x = L . In region III for x > L , a wave packet (transmitted

particle) that has tunneled through the potential barrier moves as a
free particle in potential-free zone. The energy E of the incident
particle is indicated by the horizontal line.

When both the width L and the height U0 are finite, a part of the quantum wave packet incident on one side of the barrier

can penetrate the barrier boundary and continue its motion inside the barrier, where it is gradually attenuated on its way to
the other side. A part of the incident quantum wave packet eventually emerges on the other side of the barrier in the form of
the transmitted wave packet that tunneled through the barrier. How much of the incident wave can tunnel through a barrier
depends on the barrier width L and its height U0 , and on the energy E of the quantum particle incident on the barrier. This

is the physics of tunneling.

Barrier penetration by quantum wave functions was first analyzed theoretically by Friedrich Hund in 1927, shortly after
Schrӧdinger published the equation that bears his name. A year later, George Gamow used the formalism of quantum
mechanics to explain the radioactive α -decay of atomic nuclei as a quantum-tunneling phenomenon. The invention of

the tunnel diode in 1957 made it clear that quantum tunneling is important to the semiconductor industry. In modern
nanotechnologies, individual atoms are manipulated using a knowledge of quantum tunneling.

Tunneling and the Wave Function
Suppose a uniform and time-independent beam of electrons or other quantum particles with energy E traveling along the
x-axis (in the positive direction to the right) encounters a potential barrier described by Equation 7.59. The question is:
What is the probability that an individual particle in the beam will tunnel through the potential barrier? The answer can be
found by solving the boundary-value problem for the time-independent Schrӧdinger equation for a particle in the beam.
The general form of this equation is given by Equation 7.60, which we reproduce here:

(7.60)
− ℏ2

2m
d2 ψ(x)

dx2 + U(x)ψ(x) = Eψ(x), where − ∞ < x < + ∞.

In Equation 7.60, the potential function U(x) is defined by Equation 7.59. We assume that the given energy E of the
incoming particle is smaller than the height U0 of the potential barrier, E < U0 , because this is the interesting physical

case. Knowing the energy E of the incoming particle, our task is to solve Equation 7.60 for a function ψ(x) that is
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continuous and has continuous first derivatives for all x. In other words, we are looking for a “smooth-looking” solution

(because this is how wave functions look) that can be given a probabilistic interpretation so that |ψ(x)|2 = ψ* (x)ψ(x) is

the probability density.

We divide the real axis into three regions with the boundaries defined by the potential function in Equation 7.59
(illustrated in Figure 7.16) and transcribe Equation 7.60 for each region. Denoting by ψI(x) the solution in region I

for x < 0 , by ψII(x) the solution in region II for 0 ≤ x ≤ L , and by ψIII(x) the solution in region III for x > L , the

stationary Schrӧdinger equation has the following forms in these three regions:

(7.61)
− ℏ2

2m
d2 ψI(x)

dx2 = EψI(x), in region I: − ∞ < x < 0,

(7.62)
− ℏ2

2m
d2 ψII(x)

dx2 + U0 ψII(x) = EψII(x), in region II: 0 ≤ x ≤ L,

(7.63)
− ℏ2

2m
d2 ψIII(x)

dx2 = EψIII(x), in region III: L < x < + ∞.

The continuity condition at region boundaries requires that:

(7.64)ψI(0) = ψII(0), at the boundary between regions I and II and

and

(7.65)ψII(L) = ψIII(L), at the boundary between regions II and III.

The “smoothness” condition requires the first derivative of the solution be continuous at region boundaries:

(7.66)dψI(x)
dx |x = 0 = dψII(x)

dx |x = 0, at the boundary between regions I and II;

and

(7.67)dψII(x)
dx |x = L = dψIII(x)

dx |x = L, at the boundary between regions II and III.

In what follows, we find the functions ψI(x) , ψII(x) , and ψIII(x) .

We can easily verify (by substituting into the original equation and differentiating) that in regions I and III, the solutions
must be in the following general forms:

(7.68)ψI(x) = Ae+ikx + Be−ikx

(7.69)ψIII(x) = Fe+ikx + Ge−ikx

where k = 2mE/ℏ is a wave number and the complex exponent denotes oscillations,

(7.70)e±ikx = cos kx ± i sin kx.

The constants A, B, F, and G in Equation 7.68 and Equation 7.69 may be complex. These solutions are illustrated in
Figure 7.16. In region I, there are two waves—one is incident (moving to the right) and one is reflected (moving to the
left)—so none of the constants A and B in Equation 7.68 may vanish. In region III, there is only one wave (moving to the
right), which is the transmitted wave, so the constant G must be zero in Equation 7.69, G = 0 . We can write explicitly

that the incident wave is ψin(x) = Ae+ikx and that the reflected wave is ψref(x) = Be−ikx , and that the transmitted wave

is ψtra(x) = Fe+ikx . The amplitude of the incident wave is

|ψin(x)|2 = ψin* (x)ψin(x) = ⎛
⎝Ae+ikx⎞

⎠* Ae+ikx = A* e−ikx Ae+ikx = A* A = |A|2.

Similarly, the amplitude of the reflected wave is |ψref(x)|2 = |B|2 and the amplitude of the transmitted wave is

|ψtra(x)|2 = |F|2 . We know from the theory of waves that the square of the wave amplitude is directly proportional to the

wave intensity. If we want to know how much of the incident wave tunnels through the barrier, we need to compute the
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square of the amplitude of the transmitted wave. The transmission probability or tunneling probability is the ratio of the

transmitted intensity (|F|2) to the incident intensity (|A|2) , written as

(7.71)
T(L, E) = |ψtra(x)|2

|ψin(x)|2
= |F|2

|A|2
= |FA |2

where L is the width of the barrier and E is the total energy of the particle. This is the probability an individual particle in
the incident beam will tunnel through the potential barrier. Intuitively, we understand that this probability must depend on
the barrier height U0 .

In region II, the terms in equation Equation 7.62 can be rearranged to

(7.72)d2 ψII(x)
dx2 = β2 ψII(x)

where β2 is positive because U0 > E and the parameter β is a real number,

(7.73)β2 = 2m
ℏ2 (U0 − E).

The general solution to Equation 7.72 is not oscillatory (unlike in the other regions) and is in the form of exponentials
that describe a gradual attenuation of ψII(x) ,

(7.74)ψII(x) = Ce−βx + De+βx.

The two types of solutions in the three regions are illustrated in Figure 7.17.

Figure 7.17 Three types of solutions to the stationary
Schrӧdinger equation for the quantum-tunneling problem:
Oscillatory behavior in regions I and III where a quantum particle
moves freely, and exponential-decay behavior in region II (the
barrier region) where the particle moves in the potential U0 .

Now we use the boundary conditions to find equations for the unknown constants. Equation 7.68 and Equation 7.74 are
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substituted into Equation 7.64 to give

(7.75)A + B = C + D.

Equation 7.74 and Equation 7.69 are substituted into Equation 7.65 to give

(7.76)Ce−βL + De+βL = Fe+ikL.

Similarly, we substitute Equation 7.68 and Equation 7.74 into Equation 7.66, differentiate, and obtain

(7.77)−ik(A − B) = β(D − C).

Similarly, the boundary condition Equation 7.67 reads explicitly

(7.78)β⎛
⎝De+βL − Ce−βL⎞

⎠ = −ikFe+ikL.

We now have four equations for five unknown constants. However, because the quantity we are after is the transmission
coefficient, defined in Equation 7.71 by the fraction F/A, the number of equations is exactly right because when we divide
each of the above equations by A, we end up having only four unknown fractions: B/A, C/A, D/A, and F/A, three of which
can be eliminated to find F/A. The actual algebra that leads to expression for F/A is pretty lengthy, but it can be done either
by hand or with a help of computer software. The end result is

(7.79)F
A = e−ikL

cosh (βL) + i(γ/2)sinh (βL).

In deriving Equation 7.79, to avoid the clutter, we use the substitutions γ ≡ β/k − k/β ,

cosh y = ey + e−y

2 , and sinh y = ey − e−y

2 .

We substitute Equation 7.79 into Equation 7.71 and obtain the exact expression for the transmission coefficient for the
barrier,

T(L, E) = ⎛
⎝

F
A

⎞
⎠* F

A = e+ikL

cosh (βL) − i(γ/2)sinh (βL) · e−ikL

cosh (βL) + i(γ/2)sinh (βL)

or

(7.80)T(L, E) = 1
cosh2(βL) + (γ/2)2 sinh2(βL)

where

⎛
⎝
γ
2

⎞
⎠
2

= 1
4
⎛
⎝

1 − E/U0
E/U0

+ E/U0
1 − E/U0

− 2⎞
⎠.

For a wide and high barrier that transmits poorly, Equation 7.80 can be approximated by

(7.81)T(L, E) = 16 E
U0

⎛
⎝1 − E

U0

⎞
⎠e−2βL.

Whether it is the exact expression Equation 7.80 or the approximate expression Equation 7.81, we see that the tunneling
effect very strongly depends on the width L of the potential barrier. In the laboratory, we can adjust both the potential height
U0 and the width L to design nano-devices with desirable transmission coefficients.
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Example 7.12

Transmission Coefficient

Two copper nanowires are insulated by a copper oxide nano-layer that provides a 10.0-eV potential barrier.
Estimate the tunneling probability between the nanowires by 7.00-eV electrons through a 5.00-nm thick oxide
layer. What if the thickness of the layer were reduced to just 1.00 nm? What if the energy of electrons were
increased to 9.00 eV?

Strategy

Treating the insulating oxide layer as a finite-height potential barrier, we use Equation 7.81. We identify
U0 = 10.0 eV , E1 = 7.00 eV , E2 = 9.00 eV , L1 = 5.00 nm , and L2 = 1.00 nm . We use Equation 7.73

to compute the exponent. Also, we need the rest mass of the electron m = 511 keV/c2 and Planck’s constant

ℏ = 0.1973keV · nm/c . It is typical for this type of estimate to deal with very small quantities that are often not

suitable for handheld calculators. To make correct estimates of orders, we make the conversion ey = 10y/ln 10
.

Solution

Constants:

2m
ℏ2 = 2(511 keV/c2)

(0.1973keV · nm/c)2 = 26, 254 1
keV · (nm)2,

β = 2m
ℏ2 (U0 − E) = 26, 254(10.0 eV − E)

keV · (nm)2 = 26.254(10.0 eV − E)/eV 1
nm.

For a lower-energy electron with E1 = 7.00 eV :

β1 = 26.254(10.00 eV − E1)/eV 1
nm = 26.254(10.00 − 7.00) 1

nm = 8.875
nm ,

T(L, E1) = 16E1
U0

⎛
⎝1 − E1

U0

⎞
⎠e

−2β1 L
= 16 7

10
⎛
⎝1 − 7

10
⎞
⎠e

−17.75 L/nm = 3.36e−17.75 L/nm.

For a higher-energy electron with E2 = 9.00 eV :

β2 = 26.254(10.00 eV − E2)/eV 1
nm = 26.254(10.00 − 9.00) 1

nm = 5.124
nm ,

T(L, E2) = 16E2
U0

⎛
⎝1 − E2

U0

⎞
⎠e

−2β2 L
= 16 9

10
⎛
⎝1 − 9

10
⎞
⎠e

−5.12 L/nm = 1.44e−5.12 L/nm.

For a broad barrier with L1 = 5.00 nm :

T(L1, E1) = 3.36e
−17.75 L1 /nm

= 3.36e−17.75 · 5.00 nm/nm = 3.36e−88 = 3.36(6.2 × 10−39) = 2.1% × 10−36,

T(L1, E2) = 1.44e
−5.12 L1 /nm

= 1.44e−5.12 · 5.00 nm/nm = 1.44e−25.6 = 1.44(7.62 × 10−12) = 1.1% × 10−9.

For a narrower barrier with L2 = 1.00 nm :

T(L2, E1) = 3.36e
−17.75 L2 /nm

= 3.36e−17.75 · 1.00 nm/nm = 3.36e−17.75 = 3.36(5.1 × 10−7) = 1.7% × 10−4,

T(L2, E2) = 1.44e
−5.12 L2 /nm

= 1.44e−5.12 · 1.00 nm/nm = 1.44e−5.12 = 1.44(5.98 × 10−3) = 0.86%.

Significance

We see from these estimates that the probability of tunneling is affected more by the width of the potential barrier
than by the energy of an incident particle. In today’s technologies, we can manipulate individual atoms on metal
surfaces to create potential barriers that are fractions of a nanometer, giving rise to measurable tunneling currents.
One of many applications of this technology is the scanning tunneling microscope (STM), which we discuss later
in this section.
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7.10 Check Your Understanding A proton with kinetic energy 1.00 eV is incident on a square potential
barrier with height 10.00 eV. If the proton is to have the same transmission probability as an electron of the
same energy, what must the width of the barrier be relative to the barrier width encountered by an electron?

Radioactive Decay
In 1928, Gamow identified quantum tunneling as the mechanism responsible for the radioactive decay of atomic nuclei.
He observed that some isotopes of thorium, uranium, and bismuth disintegrate by emitting α -particles (which are doubly

ionized helium atoms or, simply speaking, helium nuclei). In the process of emitting an α -particle, the original nucleus

is transformed into a new nucleus that has two fewer neutrons and two fewer protons than the original nucleus. The α
-particles emitted by one isotope have approximately the same kinetic energies. When we look at variations of these energies
among isotopes of various elements, the lowest kinetic energy is about 4 MeV and the highest is about 9 MeV, so these
energies are of the same order of magnitude. This is about where the similarities between various isotopes end.

When we inspect half-lives (a half-life is the time in which a radioactive sample loses half of its nuclei due to decay),
different isotopes differ widely. For example, the half-life of polonium-214 is 160 µs and the half-life of uranium is 4.5

billion years. Gamow explained this variation by considering a ‘spherical-box’ model of the nucleus, where α -particles can

bounce back and forth between the walls as free particles. The confinement is provided by a strong nuclear potential at a
spherical wall of the box. The thickness of this wall, however, is not infinite but finite, so in principle, a nuclear particle
has a chance to escape this nuclear confinement. On the inside wall of the confining barrier is a high nuclear potential that
keeps the α -particle in a small confinement. But when an α -particle gets out to the other side of this wall, it is subject

to electrostatic Coulomb repulsion and moves away from the nucleus. This idea is illustrated in Figure 7.18. The width L
of the potential barrier that separates an α -particle from the outside world depends on the particle’s kinetic energy E. This

width is the distance between the point marked by the nuclear radius R and the point R0 where an α -particle emerges on

the other side of the barrier, L = R0 − R . At the distance R0 , its kinetic energy must at least match the electrostatic energy

of repulsion, E = (4πε0)−1 Ze2 /R0 (where +Ze is the charge of the nucleus). In this way we can estimate the width of

the nuclear barrier,

L = e2

4πε0
Z
E − R.

We see from this estimate that the higher the energy of α -particle, the narrower the width of the barrier that it is to tunnel

through. We also know that the width of the potential barrier is the most important parameter in tunneling probability. Thus,
highly energetic α -particles have a good chance to escape the nucleus, and, for such nuclei, the nuclear disintegration

half-life is short. Notice that this process is highly nonlinear, meaning a small increase in the α -particle energy has a

disproportionately large enhancing effect on the tunneling probability and, consequently, on shortening the half-life. This
explains why the half-life of polonium that emits 8-MeV α -particles is only hundreds of milliseconds and the half-life of

uranium that emits 4-MeV α -particles is billions of years.
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Figure 7.18 The potential energy barrier for an α -particle

bound in the nucleus: To escape from the nucleus, an α -particle

with energy E must tunnel across the barrier from distance R to
distance R0 away from the center.

Field Emission
Field emission is a process of emitting electrons from conducting surfaces due to a strong external electric field that is
applied in the direction normal to the surface (Figure 7.19). As we know from our study of electric fields in earlier
chapters, an applied external electric field causes the electrons in a conductor to move to its surface and stay there as long
as the present external field is not excessively strong. In this situation, we have a constant electric potential throughout
the inside of the conductor, including its surface. In the language of potential energy, we say that an electron inside
the conductor has a constant potential energy U(x) = −U0 (here, the x means inside the conductor). In the situation

represented in Figure 7.19, where the external electric field is uniform and has magnitude Eg , if an electron happens

to be outside the conductor at a distance x away from its surface, its potential energy would have to be U(x) = −eEg x

(here, x denotes distance to the surface). Taking the origin at the surface, so that x = 0 is the location of the surface,

we can represent the potential energy of conduction electrons in a metal as the potential energy barrier shown in Figure
7.20. In the absence of the external field, the potential energy becomes a step barrier defined by U(x ≤ 0) = −U0 and by

U(x > 0) = 0 .
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Figure 7.19 A normal-direction external electric field at the
surface of a conductor: In a strong field, the electrons on a
conducting surface may get detached from it and accelerate
against the external electric field away from the surface.

Figure 7.20 The potential energy barrier at the surface of a metallic conductor in the
presence of an external uniform electric field Eg normal to the surface: It becomes a

step-function barrier when the external field is removed. The work function of the metal
is indicated by ϕ.

When an external electric field is strong, conduction electrons at the surface may get detached from it and accelerate along
electric field lines in a direction antiparallel to the external field, away from the surface. In short, conduction electrons may
escape from the surface. The field emission can be understood as the quantum tunneling of conduction electrons through
the potential barrier at the conductor’s surface. The physical principle at work here is very similar to the mechanism of α
-emission from a radioactive nucleus.
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Suppose a conduction electron has a kinetic energy E (the average kinetic energy of an electron in a metal is the work
function ϕ for the metal and can be measured, as discussed for the photoelectric effect in Photons and Matter Waves),

and an external electric field can be locally approximated by a uniform electric field of strength Eg . The width L of the

potential barrier that the electron must cross is the distance from the conductor’s surface to the point outside the surface
where its kinetic energy matches the value of its potential energy in the external field. In Figure 7.20, this distance is
measured along the dashed horizontal line U(x) = E from x = 0 to the intercept with U(x) = −eEg x , so the barrier

width is

L = e−1 E
Eg

= e−1 ϕ
Eg

.

We see that L is inversely proportional to the strength Eg of an external field. When we increase the strength of the external

field, the potential barrier outside the conductor becomes steeper and its width decreases for an electron with a given kinetic
energy. In turn, the probability that an electron will tunnel across the barrier (conductor surface) becomes exponentially
larger. The electrons that emerge on the other side of this barrier form a current (tunneling-electron current) that can
be detected above the surface. The tunneling-electron current is proportional to the tunneling probability. The tunneling
probability depends nonlinearly on the barrier width L, and L can be changed by adjusting Eg . Therefore, the tunneling-

electron current can be tuned by adjusting the strength of an external electric field at the surface. When the strength of
an external electric field is constant, the tunneling-electron current has different values at different elevations L above the
surface.

The quantum tunneling phenomenon at metallic surfaces, which we have just described, is the physical principle behind the
operation of the scanning tunneling microscope (STM), invented in 1981 by Gerd Binnig and Heinrich Rohrer. The STM
device consists of a scanning tip (a needle, usually made of tungsten, platinum-iridium, or gold); a piezoelectric device that
controls the tip’s elevation in a typical range of 0.4 to 0.7 nm above the surface to be scanned; some device that controls the
motion of the tip along the surface; and a computer to display images. While the sample is kept at a suitable voltage bias,
the scanning tip moves along the surface (Figure 7.21), and the tunneling-electron current between the tip and the surface
is registered at each position. The amount of the current depends on the probability of electron tunneling from the surface to
the tip, which, in turn, depends on the elevation of the tip above the surface. Hence, at each tip position, the distance from
the tip to the surface is measured by measuring how many electrons tunnel out from the surface to the tip. This method can
give an unprecedented resolution of about 0.001 nm, which is about 1% of the average diameter of an atom. In this way, we
can see individual atoms on the surface, as in the image of a carbon nanotube in Figure 7.22.
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Figure 7.21 In STM, a surface at a constant potential is being scanned by a narrow tip
moving along the surface. When the STM tip moves close to surface atoms, electrons can
tunnel from the surface to the tip. This tunneling-electron current is continually monitored
while the tip is in motion. The amount of current at location (x,y) gives information about
the elevation of the tip above the surface at this location. In this way, a detailed
topographical map of the surface is created and displayed on a computer monitor.

Figure 7.22 An STM image of a carbon nanotube: Atomic-
scale resolution allows us to see individual atoms on the surface.
STM images are in gray scale, and coloring is added to bring up
details to the human eye. (credit: Taner Yildirim, NIST)

Resonant Quantum Tunneling
Quantum tunneling has numerous applications in semiconductor devices such as electronic circuit components or integrated
circuits that are designed at nanoscales; hence, the term ‘ nanotechnology.’ For example, a diode (an electric-circuit
element that causes an electron current in one direction to be different from the current in the opposite direction, when
the polarity of the bias voltage is reversed) can be realized by a tunneling junction between two different types of
semiconducting materials. In such a tunnel diode, electrons tunnel through a single potential barrier at a contact between
two different semiconductors. At the junction, tunneling-electron current changes nonlinearly with the applied potential
difference across the junction and may rapidly decrease as the bias voltage is increased. This is unlike the Ohm’s law
behavior that we are familiar with in household circuits. This kind of rapid behavior (caused by quantum tunneling) is
desirable in high-speed electronic devices.

Another kind of electronic nano-device utilizes resonant tunneling of electrons through potential barriers that occur in
quantum dots. A quantum dot is a small region of a semiconductor nanocrystal that is grown, for example, in a silicon or
aluminum arsenide crystal. Figure 7.23(a) shows a quantum dot of gallium arsenide embedded in an aluminum arsenide
wafer. The quantum-dot region acts as a potential well of a finite height (shown in Figure 7.23(b)) that has two finite-
height potential barriers at dot boundaries. Similarly, as for a quantum particle in a box (that is, an infinite potential well),
lower-lying energies of a quantum particle trapped in a finite-height potential well are quantized. The difference between
the box and the well potentials is that a quantum particle in a box has an infinite number of quantized energies and is trapped
in the box indefinitely, whereas a quantum particle trapped in a potential well has a finite number of quantized energy levels

Chapter 7 | Quantum Mechanics 343



and can tunnel through potential barriers at well boundaries to the outside of the well. Thus, a quantum dot of gallium
arsenide sitting in aluminum arsenide is a potential well where low-lying energies of an electron are quantized, indicated as
Edot in part (b) in the figure. When the energy Eelectron of an electron in the outside region of the dot does not match its

energy Edot that it would have in the dot, the electron does not tunnel through the region of the dot and there is no current

through such a circuit element, even if it were kept at an electric voltage difference (bias). However, when this voltage bias
is changed in such a way that one of the barriers is lowered, so that Edot and Eelectron become aligned, as seen in part (c)

of the figure, an electron current flows through the dot. When the voltage bias is now increased, this alignment is lost and
the current stops flowing. When the voltage bias is increased further, the electron tunneling becomes improbable until the
bias voltage reaches a value for which the outside electron energy matches the next electron energy level in the dot. The
word ‘resonance’ in the device name means that the tunneling-electron current occurs only when a selected energy level
is matched by tuning an applied voltage bias, such as in the operation mechanism of the resonant-tunneling diode just
described. Resonant-tunneling diodes are used as super-fast nano-switches.

Figure 7.23 Resonant-tunneling diode: (a) A quantum dot of gallium arsenide embedded in aluminum arsenide.
(b) Potential well consisting of two potential barriers of a quantum dot with no voltage bias. Electron energies
Eelectron in aluminum arsenide are not aligned with their energy levels Edot in the quantum dot, so electrons do

not tunnel through the dot. (c) Potential well of the dot with a voltage bias across the device. A suitably tuned
voltage difference distorts the well so that electron-energy levels in the dot are aligned with their energies in
aluminum arsenide, causing the electrons to tunnel through the dot.
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anti-symmetric function

Born interpretation

complex function

Copenhagen interpretation

correspondence principle

energy levels

energy quantum number

energy-time uncertainty principle

even function

expectation value

field emission

ground state energy

Heisenberg’s uncertainty principle

infinite square well

momentum operator

nanotechnology

normalization condition

odd function

position operator

potential barrier

principal quantum number

probability density

quantum dot

quantum tunneling

resonant tunneling

resonant-tunneling diode

scanning tunneling microscope (STM)

CHAPTER 7 REVIEW

KEY TERMS
odd function

states that the square of a wave function is the probability density

function containing both real and imaginary parts

states that when an observer is not looking or when a measurement is not being made, the
particle has many values of measurable quantities, such as position

in the limit of large energies, the predictions of quantum mechanics agree with the
predictions of classical mechanics

states of definite energy, often represented by horizontal lines in an energy “ladder” diagram

index that labels the allowed energy states

energy-time relation for uncertainties in the simultaneous measurements of the
energy of a quantum state and of its lifetime

in one dimension, a function symmetric with the origin of the coordinate system

average value of the physical quantity assuming a large number of particles with the same wave
function

electron emission from conductor surfaces when a strong external electric field is applied in normal
direction to conductor’s surface

lowest energy state in the energy spectrum

places limits on what can be known from a simultaneous measurements of
position and momentum; states that if the uncertainty on position is small then the uncertainty on momentum is large,
and vice versa

potential function that is zero in a fixed range and infinitely beyond this range

operator that corresponds to the momentum of a particle

technology that is based on manipulation of nanostructures such as molecules or individual atoms to
produce nano-devices such as integrated circuits

requires that the probability density integrated over the entire physical space results in the
number one

in one dimension, a function antisymmetric with the origin of the coordinate system

operator that corresponds to the position of a particle

potential function that rises and falls with increasing values of position

energy quantum number

square of the particle’s wave function

small region of a semiconductor nanocrystal embedded in another semiconductor nanocrystal, acting as a
potential well for electrons

phenomenon where particles penetrate through a potential energy barrier with a height greater than
the total energy of the particles

tunneling of electrons through a finite-height potential well that occurs only when electron energies
match an energy level in the well, occurs in quantum dots

quantum dot with an applied voltage bias across it

device that utilizes quantum-tunneling phenomenon at metallic surfaces to
obtain images of nanoscale structures
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Schrӧdinger’s time-dependent equation

Schrӧdinger’s time-independent equation

standing wave state

state reduction

stationary state

time-modulation factor

transmission probability

tunnel diode

tunneling probability

wave function

wave function collapse

wave packet

equation in space and time that allows us to determine wave functions of a
quantum particle

equation in space that allows us to determine wave functions of a
quantum particle; this wave function must be multiplied by a time-

modulation factor to obtain the time-dependent wave function

stationary state for which the real and imaginary parts of Ψ(x, t) oscillate up and down like a

standing wave (often modeled with sine and cosine functions)

hypothetical process in which an observed or detected particle “jumps into” a definite state, often
described in terms of the collapse of the particle’s wave function

state for which the probability density function, |Ψ(x, t)|2 , does not vary in time

factor e−iωt that multiplies the time-independent wave function when the potential energy of

the particle is time independent

also called tunneling probability, the probability that a particle will tunnel through a
potential barrier

electron tunneling-junction between two different semiconductors

also called transmission probability, the probability that a particle will tunnel through a potential
barrier

function that represents the quantum state of a particle (quantum system)

equivalent to state reduction

superposition of many plane matter waves that can be used to represent a localized particle

KEY EQUATIONS
Normalization condition in one dimension

P(x = −∞, +∞) = ∫
−∞

∞
|Ψ(x, t)|2dx = 1

Probability of finding a particle in a narrow interval of
position in one dimension (x, x + dx)

P(x, x + dx) = Ψ* (x, t)Ψ(x, t)dx

Expectation value of position in one dimension
〈 x 〉 = ∫

−∞

∞
Ψ* (x, t)xΨ(x, t)dx

Heisenberg’s position-momentum uncertainty principle ΔxΔp ≥ ℏ
2

Heisenberg’s energy-time uncertainty principle ΔEΔt ≥ ℏ
2

Schrӧdinger’s time-dependent equation
− ℏ2

2m
∂2Ψ(x, t)

∂ x2 + U(x, t)Ψ(x, t) = iℏ∂2Ψ(x, t)
∂ t

General form of the wave function for a time-
independent potential in one dimension

Ψ(x, t) = ψ(x)e−iωt

Schrӧdinger’s time-independent equation
− ℏ2

2m
d2 ψ(x)

dx2 + U(x)ψ(x) = Eψ(x)

Schrӧdinger’s equation (free particle)
− ℏ2

2m
∂2ψ(x)

∂ x2 = Eψ(x)

Allowed energies (particle in box of length L) En = n2 π2 ℏ2

2mL2, n = 1, 2, 3, ...
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Stationary states (particle in a box of length L) ψn(x) = 2
L sin nπx

L , n = 1, 2, 3, ...

Potential-energy function of a harmonic oscillator U(x) = 1
2mω2 x2

Stationary Schrӧdinger equation
− ℏ

2m
d2 ψ(x)

dx2 + 1
2mω2 x2 ψ(x) = Eψ(x)

The energy spectrum En = ⎛
⎝n + 1

2
⎞
⎠ℏω, n = 0, 1, 2, 3, ...

The energy wave functions
ψn(x) = Nn e−β2 x2 /2 Hn(βx), n = 0, 1, 2, 3, ...

Potential barrier

U(x) =
⎧

⎩
⎨

0, when x < 0
U0, when 0 ≤ x ≤ L

0, when x > L

Definition of the transmission coefficient
T(L, E) = |ψtra(x)|2

|ψin(x)|2

A parameter in the transmission coefficient β2 = 2m
ℏ2 (U0 − E)

Transmission coefficient, exact T(L, E) = 1
cosh2 βL + (γ/2)2 sinh2 βL

Transmission coefficient, approximate T(L, E) = 16 E
U0

⎛
⎝1 − E

U0

⎞
⎠e−2β L

SUMMARY

7.1 Wave Functions

• In quantum mechanics, the state of a physical system is represented by a wave function.

• In Born’s interpretation, the square of the particle’s wave function represents the probability density of finding the
particle around a specific location in space.

• Wave functions must first be normalized before using them to make predictions.

• The expectation value is the average value of a quantity that requires a wave function and an integration.

7.2 The Heisenberg Uncertainty Principle

• The Heisenberg uncertainty principle states that it is impossible to simultaneously measure the x-components of
position and of momentum of a particle with an arbitrarily high precision. The product of experimental uncertainties
is always larger than or equal to ℏ/2.

• The limitations of this principle have nothing to do with the quality of the experimental apparatus but originate in
the wave-like nature of matter.

• The energy-time uncertainty principle expresses the experimental observation that a quantum state that exists only
for a short time cannot have a definite energy.

7.3 The Schrӧdinger Equation

• The Schrӧdinger equation is the fundamental equation of wave quantum mechanics. It allows us to make predictions
about wave functions.

• When a particle moves in a time-independent potential, a solution of the time-dependent Schrӧdinger equation is a

Chapter 7 | Quantum Mechanics 347



product of a time-independent wave function and a time-modulation factor.

• The Schrӧdinger equation can be applied to many physical situations.

7.4 The Quantum Particle in a Box

• Energy states of a quantum particle in a box are found by solving the time-independent Schrӧdinger equation.

• To solve the time-independent Schrӧdinger equation for a particle in a box and find the stationary states and allowed
energies, we require that the wave function terminate at the box wall.

• Energy states of a particle in a box are quantized and indexed by principal quantum number.

• The quantum picture differs significantly from the classical picture when a particle is in a low-energy state of a low
quantum number.

• In the limit of high quantum numbers, when the quantum particle is in a highly excited state, the quantum
description of a particle in a box coincides with the classical description, in the spirit of Bohr’s correspondence
principle.

7.5 The Quantum Harmonic Oscillator

• The quantum harmonic oscillator is a model built in analogy with the model of a classical harmonic oscillator. It
models the behavior of many physical systems, such as molecular vibrations or wave packets in quantum optics.

• The allowed energies of a quantum oscillator are discrete and evenly spaced. The energy spacing is equal to Planck’s
energy quantum.

• The ground state energy is larger than zero. This means that, unlike a classical oscillator, a quantum oscillator is
never at rest, even at the bottom of a potential well, and undergoes quantum fluctuations.

• The stationary states (states of definite energy) have nonzero values also in regions beyond classical turning points.
When in the ground state, a quantum oscillator is most likely to be found around the position of the minimum of the
potential well, which is the least-likely position for a classical oscillator.

• For high quantum numbers, the motion of a quantum oscillator becomes more similar to the motion of a classical
oscillator, in accordance with Bohr’s correspondence principle.

7.6 The Quantum Tunneling of Particles through Potential Barriers

• A quantum particle that is incident on a potential barrier of a finite width and height may cross the barrier and appear
on its other side. This phenomenon is called ‘quantum tunneling.’ It does not have a classical analog.

• To find the probability of quantum tunneling, we assume the energy of an incident particle and solve the stationary
Schrӧdinger equation to find wave functions inside and outside the barrier. The tunneling probability is a ratio of
squared amplitudes of the wave past the barrier to the incident wave.

• The tunneling probability depends on the energy of the incident particle relative to the height of the barrier and on
the width of the barrier. It is strongly affected by the width of the barrier in a nonlinear, exponential way so that a
small change in the barrier width causes a disproportionately large change in the transmission probability.

• Quantum-tunneling phenomena govern radioactive nuclear decays. They are utilized in many modern technologies
such as STM and nano-electronics. STM allows us to see individual atoms on metal surfaces. Electron-tunneling
devices have revolutionized electronics and allow us to build fast electronic devices of miniature sizes.

CONCEPTUAL QUESTIONS

7.1 Wave Functions

1. What is the physical unit of a wave function, Ψ(x, t)?
What is the physical unit of the square of this wave
function?

2. Can the magnitude of a wave function
(Ψ* (x, t) Ψ(x, t)) be a negative number? Explain.

3. What kind of physical quantity does a wave function of
an electron represent?

4. What is the physical meaning of a wave function of a
particle?

5. What is the meaning of the expression “expectation
value?” Explain.
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7.2 The Heisenberg Uncertainty Principle

6. If the formalism of quantum mechanics is ‘more exact’
than that of classical mechanics, why don’t we use quantum
mechanics to describe the motion of a leaping frog?
Explain.

7. Can the de Broglie wavelength of a particle be known
precisely? Can the position of a particle be known
precisely?

8. Can we measure the energy of a free localized particle
with complete precision?

9. Can we measure both the position and momentum of a
particle with complete precision?

7.3 The Schrӧdinger Equation

10. What is the difference between a wave function
ψ(x, y, z) and a wave function Ψ(x, y, z, t) for the same

particle?

11. If a quantum particle is in a stationary state, does it
mean that it does not move?

12. Explain the difference between time-dependent and
-independent Schrӧdinger’s equations.

13. Suppose a wave function is discontinuous at some
point. Can this function represent a quantum state of some
physical particle? Why? Why not?

7.4 The Quantum Particle in a Box

14. Using the quantum particle in a box model, describe
how the possible energies of the particle are related to the
size of the box.

15. Is it possible that when we measure the energy of a
quantum particle in a box, the measurement may return a
smaller value than the ground state energy? What is the
highest value of the energy that we can measure for this
particle?

16. For a quantum particle in a box, the first excited state
(Ψ2) has zero value at the midpoint position in the box, so

that the probability density of finding a particle at this point

is exactly zero. Explain what is wrong with the following
reasoning: “If the probability of finding a quantum particle
at the midpoint is zero, the particle is never at this point,
right? How does it come then that the particle can cross this
point on its way from the left side to the right side of the
box?

7.5 The Quantum Harmonic Oscillator

17. Is it possible to measure energy of 0.75ℏω for a

quantum harmonic oscillator? Why? Why not? Explain.

18. Explain the connection between Planck’s hypothesis
of energy quanta and the energies of the quantum harmonic
oscillator.

19. If a classical harmonic oscillator can be at rest, why
can the quantum harmonic oscillator never be at rest? Does
this violate Bohr’s correspondence principle?

20. Use an example of a quantum particle in a box or
a quantum oscillator to explain the physical meaning of
Bohr’s correspondence principle.

21. Can we simultaneously measure position and energy
of a quantum oscillator? Why? Why not?

7.6 The Quantum Tunneling of Particles

through Potential Barriers

22. When an electron and a proton of the same kinetic
energy encounter a potential barrier of the same height and
width, which one of them will tunnel through the barrier
more easily? Why?

23. What decreases the tunneling probability most:
doubling the barrier width or halving the kinetic energy of
the incident particle?

24. Explain the difference between a box-potential and a
potential of a quantum dot.

25. Can a quantum particle ‘escape’ from an infinite
potential well like that in a box? Why? Why not?

26. A tunnel diode and a resonant-tunneling diode both
utilize the same physics principle of quantum tunneling. In
what important way are they different?
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PROBLEMS

7.1 Wave Functions

27. Compute |Ψ(x, t)|  2 for the function

Ψ(x, t) = ψ(x) sin ω  t , where ω is a real constant.

28. Given the complex-valued function

f (x, y) = (x − iy)/(x + iy) , calculate | f (x, y)|  2 .

29. Which one of the following functions, and why,
qualifies to be a wave function of a particle that can move

along the entire real axis? (a) ψ(x) = Ae−x  2 ;

(b) ψ(x) = Ae−x ; (c) ψ(x) = A tan x ;

(d) ψ(x) = A(sin x)/x ; (e) ψ(x) = Ae−|x| .

30. A particle with mass m moving along the x-axis and
its quantum state is represented by the following wave
function:

Ψ(x, t) =
⎧

⎩
⎨

0, x < 0,
Axe−α x e−i E t/ℏ, x ≥ 0,

where α = 2.0 × 10  10 m−1 . (a) Find the normalization

constant. (b) Find the probability that the particle can be
found on the interval 0 ≤ x ≤ L . (c) Find the expectation

value of position. (d) Find the expectation value of kinetic
energy.

31. A wave function of a particle with mass m is given by

ψ(x) =
⎧

⎩
⎨

A cos αx, − π
2α ≤ x ≤ + π

2α,

0, otherwise,

where α = 1.00 × 1010/m . (a) Find the normalization

constant. (b) Find the probability that the particle can be

found on the interval 0 ≤ x ≤ 0.5 × 10−10 m . (c) Find the

particle’s average position. (d) Find its average momentum.
(e) Find its average kinetic energy

−0.5 × 10−10 m ≤ x ≤ + 0.5 × 10−10 m .

7.2 The Heisenberg Uncertainty Principle

32. A velocity measurement of an α -particle has been

performed with a precision of 0.02 mm/s. What is the
minimum uncertainty in its position?

33. A gas of helium atoms at 273 K is in a cubical
container with 25.0 cm on a side. (a) What is the minimum
uncertainty in momentum components of helium atoms?
(b) What is the minimum uncertainty in velocity

components? (c) Find the ratio of the uncertainties in (b) to
the mean speed of an atom in each direction.

34. If the uncertainty in the y -component of a proton’s

position is 2.0 pm, find the minimum uncertainty in the
simultaneous measurement of the proton’s y -component

of velocity. What is the minimum uncertainty in the
simultaneous measurement of the proton’s x -component

of velocity?

35. Some unstable elementary particle has a rest energy of
80.41 GeV and an uncertainty in rest energy of 2.06 GeV.
Estimate the lifetime of this particle.

36. An atom in a metastable state has a lifetime of 5.2
ms. Find the minimum uncertainty in the measurement of
energy of the excited state.

37. Measurements indicate that an atom remains in an
excited state for an average time of 50.0 ns before making
a transition to the ground state with the simultaneous
emission of a 2.1-eV photon. (a) Estimate the uncertainty
in the frequency of the photon. (b) What fraction of the
photon’s average frequency is this?

38. Suppose an electron is confined to a region of length
0.1 nm (of the order of the size of a hydrogen atom) and
its kinetic energy is equal to the ground state energy of
the hydrogen atom in Bohr’s model (13.6 eV). (a) What is
the minimum uncertainty of its momentum? What fraction
of its momentum is it? (b) What would the uncertainty in
kinetic energy of this electron be if its momentum were
equal to your answer in part (a)? What fraction of its kinetic
energy is it?

7.3 The Schrӧdinger Equation

39. Combine Equation 7.17 and Equation 7.18 to

show k2 = ω2

c2 .

40. Show that Ψ(x, t) = Aei(kx − ωt)
is a valid solution to

Schrӧdinger’s time-dependent equation.

41. Show that Ψ(x, t) = A sin(kx − ωt) and

Ψ(x, t) = A cos(kx − ωt) do not obey Schrӧdinger’s

time-dependent equation.

42. Show that when Ψ1(x, t) and Ψ2(x, t) are solutions

to the time-dependent Schrӧdinger equation and A,B are
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numbers, then a function Ψ(x, t) that is a superposition

of these functions is also a solution:
Ψ(x, t) = AΨ1(x, t) + BΨ1(x, t) .

43. A particle with mass m is described by the following
wave function: ψ(x) = A cos kx + B sin kx , where A, B,

and k are constants. Assuming that the particle is free,
show that this function is the solution of the stationary
Schrӧdinger equation for this particle and find the energy
that the particle has in this state.

44. Find the expectation value of the kinetic energy for

the particle in the state, Ψ(x, t) = Aei(kx − ωt)
. What

conclusion can you draw from your solution?

45. Find the expectation value of the square of the
momentum squared for the particle in the state,

Ψ(x, t) = Aei(kx − ωt)
. What conclusion can you draw

from your solution?

46. A free proton has a wave function given by

Ψ(x, t) = Ae  i (5.02 × 1011 x − 8.00 × 1015 t)
.

The coefficient of x is inverse meters (m−1) and the

coefficient on t is inverse seconds (s−1). Find its

momentum and energy.

7.4 The Quantum Particle in a Box

47. Assume that an electron in an atom can be treated as

if it were confined to a box of width 2.0 Å . What is the

ground state energy of the electron? Compare your result to
the ground state kinetic energy of the hydrogen atom in the
Bohr’s model of the hydrogen atom.

48. Assume that a proton in a nucleus can be treated as
if it were confined to a one-dimensional box of width 10.0
fm. (a) What are the energies of the proton when it is
in the states corresponding to n = 1 , n = 2 , and n = 3
? (b) What are the energies of the photons emitted when
the proton makes the transitions from the first and second
excited states to the ground state?

49. An electron confined to a box has the ground state
energy of 2.5 eV. What is the width of the box?

50. What is the ground state energy (in eV) of a proton
confined to a one-dimensional box the size of the uranium
nucleus that has a radius of approximately 15.0 fm?

51. What is the ground state energy (in eV) of an α
-particle confined to a one-dimensional box the size of the

uranium nucleus that has a radius of approximately 15.0
fm?

52. To excite an electron in a one-dimensional box from
its first excited state to its third excited state requires 20.0
eV. What is the width of the box?

53. An electron confined to a box of width 0.15 nm by
infinite potential energy barriers emits a photon when it
makes a transition from the first excited state to the ground
state. Find the wavelength of the emitted photon.

54. If the energy of the first excited state of the electron in
the box is 25.0 eV, what is the width of the box?

55. Suppose an electron confined to a box emits photons.
The longest wavelength that is registered is 500.0 nm. What
is the width of the box?

56. Hydrogen H2 molecules are kept at 300.0 K in a

cubical container with a side length of 20.0 cm. Assume
that you can treat the molecules as though they were
moving in a one-dimensional box. (a) Find the ground
state energy of the hydrogen molecule in the container. (b)
Assume that the molecule has a thermal energy given by
kB T /2 and find the corresponding quantum number n of

the quantum state that would correspond to this thermal
energy.

57. An electron is confined to a box of width 0.25 nm.
(a) Draw an energy-level diagram representing the first
five states of the electron. (b) Calculate the wavelengths
of the emitted photons when the electron makes transitions
between the fourth and the second excited states, between
the second excited state and the ground state, and between
the third and the second excited states.

58. An electron in a box is in the ground state with energy
2.0 eV. (a) Find the width of the box. (b) How much energy
is needed to excite the electron to its first excited state? (c)
If the electron makes a transition from an excited state to
the ground state with the simultaneous emission of 30.0-eV
photon, find the quantum number of the excited state?

7.5 The Quantum Harmonic Oscillator

59. Show that the two lowest energy states of the simple
harmonic oscillator, ψ0(x) and ψ1(x) from Equation

7.57, satisfy Equation 7.55.

60. If the ground state energy of a simple harmonic
oscillator is 1.25 eV, what is the frequency of its motion?

61. When a quantum harmonic oscillator makes a
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transition from the (n + 1) state to the n state and emits a

450-nm photon, what is its frequency?

62. Vibrations of the hydrogen molecule H2 can be

modeled as a simple harmonic oscillator with the spring

constant k = 1.13 × 103 N/m and mass

m = 1.67 × 10−27 kg . (a) What is the vibrational

frequency of this molecule? (b) What are the energy and
the wavelength of the emitted photon when the molecule
makes transition between its third and second excited
states?

63. A particle with mass 0.030 kg oscillates back-and-
forth on a spring with frequency 4.0 Hz. At the equilibrium
position, it has a speed of 0.60 m/s. If the particle is in a
state of definite energy, find its energy quantum number.

64. Find the expectation value 〈 x  2 〉 of the square

of the position for a quantum harmonic oscillator in the

ground state. Note: ∫
−∞

+∞
dxx  2 e  − a x  2 = π(2a  3/2)  − 1 .

65. Determine the expectation value of the potential
energy for a quantum harmonic oscillator in the ground
state. Use this to calculate the expectation value of the
kinetic energy.

66. Verify that ψ1(x) given by Equation 7.57 is a

solution of Schrӧdinger’s equation for the quantum
harmonic oscillator.

67. Estimate the ground state energy of the quantum
harmonic oscillator by Heisenberg’s uncertainty principle.
Start by assuming that the product of the uncertainties Δx
and Δp is at its minimum. Write Δp in terms of Δx and

assume that for the ground state x ≈ Δx and p ≈ Δp,
then write the ground state energy in terms of x. Finally,
find the value of x that minimizes the energy and find the
minimum of the energy.

68. A mass of 0.250 kg oscillates on a spring with the
force constant 110 N/m. Calculate the ground energy level
and the separation between the adjacent energy levels.
Express the results in joules and in electron-volts. Are
quantum effects important?

7.6 The Quantum Tunneling of Particles

through Potential Barriers

69. Show that the wave function in (a) Equation 7.68
satisfies Equation 7.61, and (b) Equation 7.69 satisfies
Equation 7.63.

70. A 6.0-eV electron impacts on a barrier with height
11.0 eV. Find the probability of the electron to tunnel
through the barrier if the barrier width is (a) 0.80 nm and
(b) 0.40 nm.

71. A 5.0-eV electron impacts on a barrier of with 0.60
nm. Find the probability of the electron to tunnel through
the barrier if the barrier height is (a) 7.0 eV; (b) 9.0 eV; and
(c) 13.0 eV.

72. A 12.0-eV electron encounters a barrier of height 15.0
eV. If the probability of the electron tunneling through the
barrier is 2.5 %, find its width.

73. A quantum particle with initial kinetic energy 32.0
eV encounters a square barrier with height 41.0 eV and
width 0.25 nm. Find probability that the particle tunnels
through this barrier if the particle is (a) an electron and, (b)
a proton.

74. A simple model of a radioactive nuclear decay
assumes that α -particles are trapped inside a well of

nuclear potential that walls are the barriers of a finite width
2.0 fm and height 30.0 MeV. Find the tunneling probability
across the potential barrier of the wall for α -particles

having kinetic energy (a) 29.0 MeV and (b) 20.0 MeV. The

mass of the α -particle is m = 6.64 × 10−27 kg .

75. A muon, a quantum particle with a mass
approximately 200 times that of an electron, is incident on
a potential barrier of height 10.0 eV. The kinetic energy
of the impacting muon is 5.5 eV and only about 0.10% of
the squared amplitude of its incoming wave function filters
through the barrier. What is the barrier’s width?

76. A grain of sand with mass 1.0 mg and kinetic energy
1.0 J is incident on a potential energy barrier with height
1.000001 J and width 2500 nm. How many grains of sand
have to fall on this barrier before, on the average, one
passes through?

ADDITIONAL PROBLEMS

77. Show that if the uncertainty in the position of a particle
is on the order of its de Broglie’s wavelength, then the
uncertainty in its momentum is on the order of the value of

its momentum.

78. The mass of a ρ -meson is measured to be
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770 MeV/c2 with an uncertainty of 100 MeV/c2 .

Estimate the lifetime of this meson.

79. A particle of mass m is confined to a box of width
L. If the particle is in the first excited state, what are the
probabilities of finding the particle in a region of width
0.020 L around the given point x: (a) x = 0.25L ; (b)

x = 0.40L ; (c) x = 0.75L ; and (d) x = 0.90L .

80. A particle in a box [0;L] is in the third excited state.
What are its most probable positions?

81. A 0.20-kg billiard ball bounces back and forth without
losing its energy between the cushions of a 1.5 m long
table. (a) If the ball is in its ground state, how many years
does it need to get from one cushion to the other? You may
compare this time interval to the age of the universe. (b)
How much energy is required to make the ball go from its
ground state to its first excited state? Compare it with the
kinetic energy of the ball moving at 2.0 m/s.

82. Find the expectation value of the position squared
when the particle in the box is in its third excited state and
the length of the box is L.

83. Consider an infinite square well with wall boundaries
x = 0 and x = L. Show that the function

ψ(x) = A sin kx is the solution to the stationary

Schrӧdinger equation for the particle in a box only if
k = 2mE/ℏ. Explain why this is an acceptable wave

function only if k is an integer multiple of π/L.

84. Consider an infinite square well with wall boundaries
x = 0 and x = L. Explain why the function

ψ(x) = A cos kx is not a solution to the stationary

Schrӧdinger equation for the particle in a box.

85. Atoms in a crystal lattice vibrate in simple harmonic
motion. Assuming a lattice atom has a mass of

9.4 × 10−26 kg , what is the force constant of the lattice if

a lattice atom makes a transition from the ground state to
first excited state when it absorbs a 525-µm photon?

86. A diatomic molecule behaves like a quantum
harmonic oscillator with the force constant 12.0 N/m and

mass 5.60 × 10−26 kg . (a) What is the wavelength of the

emitted photon when the molecule makes the transition
from the third excited state to the second excited state? (b)
Find the ground state energy of vibrations for this diatomic
molecule.

87. An electron with kinetic energy 2.0 MeV encounters a
potential energy barrier of height 16.0 MeV and width 2.00
nm. What is the probability that the electron emerges on the
other side of the barrier?

88. A beam of mono-energetic protons with energy 2.0
MeV falls on a potential energy barrier of height 20.0 MeV
and of width 1.5 fm. What percentage of the beam is
transmitted through the barrier?

CHALLENGE PROBLEMS

89. An electron in a long, organic molecule used in a dye
laser behaves approximately like a quantum particle in a
box with width 4.18 nm. Find the emitted photon when the
electron makes a transition from the first excited state to the
ground state and from the second excited state to the first
excited state.

90. In STM, an elevation of the tip above the surface being
scanned can be determined with a great precision, because
the tunneling-electron current between surface atoms and
the atoms of the tip is extremely sensitive to the variation of
the separation gap between them from point to point along
the surface. Assuming that the tunneling-electron current is
in direct proportion to the tunneling probability and that the
tunneling probability is to a good approximation expressed

by the exponential function e−2β L
with β = 10.0/nm ,

determine the ratio of the tunneling current when the tip is
0.500 nm above the surface to the current when the tip is
0.515 nm above the surface.

91. If STM is to detect surface features with local heights
of about 0.00200 nm, what percent change in tunneling-
electron current must the STM electronics be able to
detect? Assume that the tunneling-electron current has
characteristics given in the preceding problem.

92. Use Heisenberg’s uncertainty principle to estimate the
ground state energy of a particle oscillating on an spring
with angular frequency, ω = k/m , where k is the spring

constant and m is the mass.

93. Suppose an infinite square well extends from −L/2 to

+L/2 . Solve the time-independent Schrӧdinger’s equation

to find the allowed energies and stationary states of a
particle with mass m that is confined to this well. Then
show that these solutions can be obtained by making the
coordinate transformation x′ = x − L/2 for the solutions

obtained for the well extending between 0 and L.
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94. A particle of mass m confined to a box of width L is
in its first excited state ψ2(x) . (a) Find its average position

(which is the expectation value of the position). (b) Where
is the particle most likely to be found?
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